KAIST 생명과학과동창회
  • News & Events
  • 생명과학의 역사를 쓰는 사람들 Research Highlights

생명과학의 역사를 쓰는 사람들 Research Highlights

Extra Form
인터뷰 이준우
논문 Junwoo Lee, Eun Shik Choi & Daeyoup Lee (2017) It's fun to transcribe with Fun30: a model for nucleosome dynamics during RNA polymerase II-mediated elongation. Transcription. 2017 Sep 19:0
한줄요약 RNA 전사 신장을 촉진하기 위하여 일어나는 뉴클레오좀 역학을 Fun30라는 염색질 개조 효소와 FACT 라는 히스톤 샤페론이 조절함을 생명정보학적 증거를 기반으로 한 수학적 모델로 설명함.

인터뷰


 1. 논문 내용과 의미를 설명해 주세요.

 본 논문은 제가 Nature Communications 에 개제하였던 연구 내용을 긍정적으로 평가한 <Transcription> 이라는 잡지사에서 제 논문에 관한 review 논문을 작성해 달라는 부탁을 보내와서, 제가 발표했던 연구 성과들 중, 세포 내에서 전사 신장 과정 (transcription elongation)’을 촉진하기 위하여 일어나는 뉴클레오좀 역학 (nucleosome dynamics)’을 생명정보학적 증거들을 기반으로 수학적 모델을 세워 설명한 부분을 강조하여 발표한 ‘Point-of-view’ 논문입니다.

여러분들도 잘 아시듯, 진핵 세포 (eukaryotic cell)의 염색질 (chromatin) DNA가 히스톤 (histone) 단백질을 감고 있는 뉴클레오좀 (nucleosome) 구조로 응축되어 있습니다. 따라서, 진핵 세포의 염색질에서 전사 과정을 수행하는 RNA 중합효소 II (RNA polymerase II)가 전사 과정 중에 만나게 되는 뉴클레오좀으로 인하여 발생하는 뉴클레오좀 장벽 (nucleosome barrier)’을 해소 하는 기작이 필수적으로 요구됩니다. 하지만, 그 동안 이루어져 온 수많은 연구들은 이 전사 과정을 구성하는 세부 기작들 중 전사 시작 (transcription initiation)’ 에 집중되어 있었기에 전사 시작 이후에 이루어지는 전사 신장 (transcription elongation)’ 과정의 뉴클레오좀 역학에 대한 연구는 많이 부족하였습니다. 그 동안 많은 과학자들이 염색질 개조 효소 군 (chromatin remodeler family)’뉴클레오좀 분해 (nucleosome disassembly)’를 통해 이 전사 신장과정에서 나타나는 뉴클레오좀 장벽을 해소할 것이라 추측해 왔지만, 이를 명확하게 밝힌 연구는 없었습니다. 거기에다 이 뉴클레오좀 분해현상을 정량적으로 관찰하는 방법으로 사용해 왔던 히스톤 교체 (histone exchange)’ 실험 기법으로는 전사 신장과정 중에 일어나는 뉴클레오좀 분해를 제대로 관찰할 수 없음이 기존 연구들에서 드러남에 따라 새로운 실험 기법까지 요구되고 있었습니다.

이러한 상황에서, 본 논문은 유전자 전사 신장 과정에서 일어나는 뉴클레오좀 장벽을 해소하는 염색질 개조 효소 Fun30Fft3 (사람에서는 SMARCAD1)’가 존재한다는 사실을 ChIP-seq 이라는 차세대 염기서열 분석 (Next Generation Sequencing; NGS)’ 기술을 통해 밝혀냄으로써 염색질 개조 효소가 실제로 전사 신장과정에서 뉴클레오좀 방어벽을 해소하는 역할을 수행함을 증명하였습니다. 거기에 ChIP-seq 데이터를 기반으로 한 뉴클레오좀 역학에 대한 수학적 모델을 통해 기존에 히스톤 교체실험 기법으로 관찰한 것은 뉴클레오좀 분해가 아닌 뉴클레오좀 손실 (nucleosome loss)’이며, ‘전사 신장과정 중 일어나는 뉴클레오좀 역학은 크게 뉴클레오좀의 분해 (disassembly)’손실 (loss)’, 그리고 재조립 (reassembly)’이라는 세 가지 요소에 의해 다음의 간단한 수식 관계로 설명될 수 있음을 처음으로 정량적으로 설명해내었다는 점에서 중요한 의미를 지니고 있습니다.

D = L + R

(D = 뉴클레오좀 분해, L = 뉴클레오좀 손실, R = 뉴클레오좀 재조립)

또한, 이 수식은 추후에 각 염색질 개조 효소전사 신장과정 중 뉴클레오좀의 분해에 얼마나 기여하는가를 추론해내는데 사용이 가능하다는 점에서 각 염색질 개조 효소들 중 어떠한 단백질이 전사 신장과정 중의 뉴클레오좀 역학에서 중요한 역할을 수행하는지 밝히는 데 사용될 수 있다는 점에서 학문적으로 중요한 위치를 차지하고 있습니다.


2. 연구과정에서 있었던 에피소드를 소개해 주세요.

 본 연구는 한 마디로 끊임없는 논의 끝에 나온 결과라고 이야기 할 수 있겠습니다. 본 연구의 초창기에 저는 Fun30Fft3 가 다양한 스트레스 환경에서 발현되는 유도 유전자 (inducible gene)’의 발현에 어떻게 관여하는가를 연구하던 도중, Fun30Fft3 가 이 유도 유전자들의 유도 속도를 촉진하는 데는 중요하지만, 최종적으로 발현될 수 있는 정도는 유지된다는 신기한 현상을 우연히 발견하였습니다. 그 당시 이러한 현상이 어떻게 설명될 수 있을 지 전혀 알지 못했던 저는 제 연구실에 함께 계셨던 최은식 박사님과 여러 번 논의한 끝에, 이러한 현상은 Fun30Fft3 가 전사 과정 중 전사 시작과정이 아닌, ‘전사 신장과정에 특이적으로 관여할 때만 나타날 수 있다는 가설을 세우고 본격적인 연구를 시작하게 되었습니다. 하지만 당시 연구실에 갖추어져 있던 ChIP-seq 실험 및 분석 기법이 제가 원하는 수준의 결과까지 보여주지 못했기에, 저는 그 실험 및 분석 기법부터 교수님 및 연구실 사람들과의 수많은 논의와 함께 새롭게 다듬어야 했습니다. 거기에다 Fun30Fft3가 실제로 전사 신장과정 중에 뉴클레오좀 분해를 촉진하는가에 대한 해답은 그 당시에 있던 접근 방법들로는 명확하게 보여지지 않았기에, 이로 인해 몇 일 동안 제가 가진 데이터들을 기반으로 최은식 박사님과 끊임없이 논의를 해야만 하였습니다. 그 끝에 저희는 뉴클레오좀 역학은 뉴클레오좀의 분해 (disassembly)’손실 (loss)’, 그리고 재조립 (reassembly)’이라는 세 가지 요소로 설명되어야 한다는 새로운 아이디어를 낼 수 있었고, 이후 저는 이 새로운 아이디어를 수학적 모델로 정리하고, 제가 가진 ChIP-seq 데이터들로 시각화 하기 위해 약 일주일 간 말 그대로 머리 터지도록 고민 하는 시간들을 보내었습니다. 그 과정은 정말 힘들었지만, 그 결과로 도출해낸 결론이 정말 아름답게모든 유전자들에서 맞아 떨어질 때의 희열은 아직도 잊을 수가 없습니다. 그리고 제 연구 성과가 다른 과학자들에게도 좋게 평가되어 본 연구를 발표한 지 얼마 지나지 않아 두 잡지사들로부터 review 논문 작성을 초청받았을 때는 솔직히 아직도 믿기지 않을 정도로 신기했습니다.


3. 연구를 통해 얻은 지혜를 후배들에게 들려주세요.

 기초 생물학자로써, 기초 생물학을 연구하는 후배들에게 꼭 하고 싶은 이야기라면 인기 있는 연구 주제를 쫓는 사람이 아니라, ‘중요한 연구를 하고자 다른 사람들과 끝까지 노력하는 사람이 되기를 바란다는 점입니다. 저는 기초 생물학자생물의 본질을 발견하고, 알아내는 자라고 생각합니다. 그리고 이 생물의 본질, 그 당시의 인기 주제라는 점으로 인해 잠깐 사람들의 관심을 받다 잊혀지는 연구들이 아니라, 오랜 시간이 지나도 사람들에게 그 분야의 근본적인 질문들에 대한 답을 찾아낸 중요한 연구들을 통해 발견해내고 알아낼 수 있다고 생각합니다. 현재 인기 있는 연구 주제들은 이미 누군가가 중요한 연구를 해내었기 때문에 그 연구 가치를 인정받아 인기 있는 주제가 된 것입니다. 이는 앞으로 그 주제에서 이루어지는 후속 연구들은 상대적으로 덜 중요한 발견들을 하게 될 가능성이 높다는 뜻이죠. 이는 생물의 본질을 알아간다는 기초 생물학자의 본질에 비추어 볼 때, 기초 생물학자로써 상당히 아쉬운 결과를 낳을 수 있다는 사실을 의미합니다. 한편, 이러한 중요한 연구들이 오늘날까지 이루어지지 않은 경우는 대부분 새로운 아이디어새로운 실험 기술이나 분석 기법을 요구하는 경우가 대부분입니다. 이는 이 연구에 도전하는 자에게 수많은 실패를 맛 보게 함을 의미하고, 이를 해결하기 위해 다른 사람들과의 수많은 논의, 그리고 끈질긴 노력을 요구함을 의미합니다. 제가 만일 우연히 찾아냈던 현상을 논의 없이 가볍게 넘겨 버렸다거나, 연구 주제가 많은 사람들에게 관심을 받는 인기 주제가 아니라는 이유만으로 가볍게 버렸거나, 혹은 새로운 접근법을 시도하지 않고 도중에 쉽게 포기하였더라면 저는 review 논문 작성을 초청 받을 정도로 중요한 연구를 해내지 못했을 것입니다. 앞으로 제 후배 기초 생물학자들도 생물학의 근본적인 질문들에 대한 답을 낼 수 있는 중요한 연구들을 해내는 과학자들이 될 수 있기를 기원합니다.


4. 나는 왜 명과학자가 되었는가?

제가 생명 과학을 공부하게 된 계기는, 대구 과학 고등학교 시절부터 수학과 물리를 좋아하기는 했지만 잘 하지는 못해서 생물 영재반에 들어가게 된 것이었습니다. 그 이후 카이스트에서 생명과학 과에 들어가 전공 수업을 듣다 보니 나 자신은 수술을 통해 사람을 치료하는 의사나, 기존에 알려진 지식을 바탕으로 실제로 이용이 가능한 약이나 기술을 개발하는 공학 쪽 보다는, 말 그대로 새로운 사실과 진실을 찾아내는 기초 과학 쪽이 잘 맞는다고 생각하게 되었습니다. 그래서 대학교 2학년 여름방학 때부터 학부 졸업 때까지 제 은사이신 이대엽 교수님 연구실에서 개별연구, URP 및 졸업연구를 하면서 다양한 실험 기법들에 대한 기초를 익혀가면서 기초 생물학자라는 직종과 유전자 전사 과정을 연구하는 부분에 관심을 가지게 되었습니다.


5. 다른 하고 싶은 이야기

이 연구는 자신의 관심 분야가 아니었음에도 불구하고 제 뜻대로 연구를 진행할 수 있도록 허락해주시고, 연구의 완성도를 곁에서 끝까지 지도해주셨던 이대엽 교수님 덕분에 시작될 수 있었고, 성공적으로 마무리 될 수 있었습니다. 그리고 본 연구를 하는 동안 경험과 지식이 부족한 저와 항상 논의해주신 최은식 박사님의 도움이 없었더라면 이 연구의 주요한 아이디어들은 세워지지 못했을 것입니다. 또한 제 데이터의 대부분을 차지한 ChIP-seq 데이터 분석의 기초를 가르쳐 주신 단국대의 강근수 교수님과 제가 연구를 하는 동안 많은 응원을 해주었던 연구실 동료들, 대학교 때부터 함께 동고동락해왔던 지헌이 형, 영호 형, 한솔이 형, 건수 형, 재욱이, 그리고 저를 지금까지 제가 꿈꾸는 방향대로 나아갈 수 있도록 양육해주신 부모님과 제가 걱정하지 않게 자신의 길을 잘 나아 간 동생이 없었더라면 이렇게 멋진 연구를 하지 못하였을 것입니다. 이 모든 분들께 진심으로 감사의 인사를 드립니다.


  1. 김성수(바이오이미징&광유전학 연구실, 허원도 교수님)

    그림1. monSTIM1의 활성화 개념 그림설명(좌), 빛 세기에 대한 세포 내 칼슘 활성도(우) 그림2. 비침습적 광조사를 받고 있는 쥐 (좌), 빛 자극에 따른 칼슘 신호 마커, c-Fos발현 (우) <빛의 민감도를 증가시킨 monSTIM1의 활성화를 통한 비침습적 뇌세포 칼...
    Date2020.02.03 By생명과학과 Views2736
    Read More
  2. 서예지 (바이오이미징&광유전학 연구실, 허원도 교수님)

    <그림. 1> Graphical Abstract: 광유도 TrkB 수용체의 국소활성화를 통한 신경세포의 극성화 <그림. 2> 광유도 TrkB 수용체의 국소활성화에 의한 액틴파 형성 및 축삭 단백질의 축적 1. 배경지식 신경세포는 발달과정동안 여러 개의 미성숙 신경 돌기를 가지...
    Date2019.12.26 By생명과학과 Views2435
    Read More
  3. 유다슬이 (바이오이미징 & 광유전학 연구실, 허원도 교수님)

    <그림 1> 항체조각과 Optobody 모식도 <그림 2> 광활성화된 항체에 의한 항원의 비활성 및 기능 억제 1. 배경지식 항체는 면역반응의 핵심 물질이며 질병 치료제로도 사용 중에 있습니다. 항체를 직접적인 질병 치료제로 사용하는 경우 항체 단백질을 정제하...
    Date2019.12.26 By생명과학과 Views2504
    Read More
  4. 김기정 (에피제네틱스 구조생물학 연구실, 송지준 교수님)

    <알데히드-알코올 탈수소효소의 구조 및 기능적 연구 > 1. 배경지식 박테리아에 널리 보존되어 있는 알데히드-알코올 탈수소효소(AdhE)는 발효과정에 관련된 효소이다. 알데히드-알코올 탈수소효소는 두 개의 도메인, 알데히드 탈수소효소와 알코올 탈수소효...
    Date2019.10.21 By생명과학과 Views3673
    Read More
  5. 신왕용 (시냅스뇌질환 연구실, 김은준 교수님)

     < NMDAR 활성을 통한 NGL-3 돌연변이 생쥐의 비정상적 행동과 전기생리학적 특징 회복 > 1. 배경지식 시냅스는 신경계의 가장 작으면서도 핵심적이고 기능적인 요소로 신경세포 간의 정보전달에 필수적인 구조입니다. 시냅스는 이온통로, 수용체, 접착 단백...
    Date2019.06.11 By생명과학과 Views3845
    Read More
  6. 장성민 (에피제네틱스 구조생물학 연구실, 송지준 교수님)

    < Cryo Electrom Microscopy (Cryo-EM) 으로 규명한 DOT1L – 유비퀴틴 뉴클레오좀 복합체 구조 > < 정상적인 뉴클레오좀 (파란색, 녹색)과 비교했을 때, DNA가 풀려 사라지고 히스톤 2차 구조가 손실되는 불안정화 현상이 관찰됨 (빨강) > 1. 배경지식 Histon...
    Date2019.04.19 By생명과학과 Views3961
    Read More
  7. 정창욱, 하승민 (시냅스뇌질환 연구실, 김은준 교수님)

     <생후 7~21일 동안 memantine을 투여한 경우 Shank2 결손 생쥐의 사회성이 개선된다.> 1. 배경지식 자폐증은 어린 나이에 발병되는 신경발달장애 중 하나로 전 세계적으로 약 1%의 유병률을 보이며 최근 점점 환자 수가 증가하고 있습니다. 그러나 현재까지...
    Date2019.04.03 By생명과학과 Views3267
    Read More
  8. 박진아 (대사신호전달 연구실, 김세윤 교수님)

    <흥분성 신경세포 특이적 IPMK 녹아웃에 의한 공포기억 소거증진 효과> 1. 배경지식 포유류에게 있어 다가오는 위협에 대응하여, 관련된 사건을 기억하고 적절한 반응을 하는 것은 생존에 매우 중요합니다. 또한 필요 이상으로 과도한 공포를 느껴 수행능력이...
    Date2019.03.28 By생명과학과 Views4133
    Read More
  9. 이윤정 (에피제네틱스 구조생물학 연구실, 송지준 교수님)

     <그림. MRG15 binding to ASH1L releases the autoinhibitory loop, and activates ASH1L histone methyltransferase activity> 1. 배경지식 DNA는 히스톤 H2A, H2B, H3, H4가 각각 한 쌍씩 8개로 결합해 이루어진 octamer에 감겨, 크로마틴의 가장 기본 단...
    Date2019.03.28 By생명과학과 Views3275
    Read More
  10. 김지훈 (바이오이미징 & 광유전학 연구실, 허원도 교수님)

    <형광단백질을 이용한 실시간 small GTPase 단백질 센서의 개발과 생명연구의 적용 > (a) Schematic of ddFP-based small GTPase sensor. (b) (top) Schematic depiction of KRas (G-KRas) sensor construct. (bottom) Fluorescence images showing Ras activ...
    Date2019.02.07 By생명과학과 Views4112
    Read More
  11. 인선아 (진핵세포전사 연구실, 김재훈 교수님)

     <RNF20/40에 의한 열충격유전자 발현 조절 메커니즘> 1. 배경지식 진핵생물에서 DNA는 히스톤 단백질과 함께 ‘뉴클레오좀’이라는 단위로 존재합니다. 히스톤에는 Methylation, Acetylation, Phosphorylation, Ubiquitylation 등의 다양한 번역 후 수정(Post-...
    Date2019.02.07 By생명과학과 Views2733
    Read More
  12. 정현진 (바이오이미징 및 광유전학 실험실, 허원도 교수님)

    <광활성 Flp을 개발, 마우스 머리에 LED를 비추어 유전자 발현을 조절함> 1. 배경지식 유전자 기능 연구를 수행하는데 있어 가장 일반적인 방법인 유전자 변형 실험모델을 만드는 것은 많은 시간, 비용, 노력 등이 소요됩니다. 연구를 수행하는데 있어 필요한...
    Date2019.01.24 By생명과학과 Views3594
    Read More
  13. 유병준 (바이오나노의약 연구실, 전상용 교수님)

    < 펩타이드-항체 복합체 구성 및 항암 작용기작 > 1. 배경지식 펩타이드의약품이란, 약 40여개 이하의 아미노산으로 이루어진 물질로 주로 화학적인 합성을 통해서 생산하는 의약품을 말합니다. 펩타이드의약품은 질병 관련 표적에 특이적 결합으로 인해 임상...
    Date2019.01.09 By생명과학과 Views4993
    Read More
  14. 신안나 (행동유전학 연구실, 김대수 교수님)

    <졸음 행동 모델 제작과정과 T타입 칼슘채널 결핍 마우스 모델의 졸음행동 차이분석> 1. 배경지식 일반적 수면 행동에 비해 졸음행동은 관련 연구가 면밀히 진행되지 않았다. 높은 칼로리의 식품 섭취는 수면을 유도하고, 마우스 모델을 사육되는 상자가 아닌...
    Date2018.12.19 By생명과학과 Views4066
    Read More
  15. 유이슬 (생체분자공학 연구실, 김학성 교수님)

    <합리적 설계가 가능한 핵단백질 나노 입자와 암세포로의 표적화 및 치료 단백질 전달> 1. 배경지식 지난 수 십년 간 다양한 질병의 진행과 관련한 분자적 기작에 대한 연구 결과가 나오면서 세포 외부에 존재하는 생체 분자뿐만 아니라, 세포 내부의 다양한 ...
    Date2018.11.12 By생명과학과 Views4618
    Read More
  16. 전종철 (진핵세포전사 연구실, 김재훈 교수님)

    <효모 Set1 complex 의 H2B ubiquitylation 의존적 H3K4 methylation 기작> 1. 배경지식 핵산인 DNA와 단백질인 히스톤은 염색체의 기본 구성인자인 nucleosome을 이룹니다. DNA를 기반으로 하는 다양한 생명현상들 예컨데 DNA replication, DNA repair, DNA ...
    Date2018.10.24 By생명과학과 Views3328
    Read More
  17. 정화진, 박하람 (시냅스뇌질환 연구실, 김은준 교수)

    <Sexually dimorphic gene expression in Chd8-mutant mice> 1. 배경지식 자폐증은 1% 가량의 인류가 영향을 받는, 굉장히 큰 사회적 비용이 들어가는 정신질환입니다. 사회성 문제와 제한되고 반복적인 행동을 보이는 환자를 자폐증으로 진단합니다. 세계적...
    Date2018.08.21 By생명과학과 Views5560
    Read More
  18. 손준영 (생체리듬 연구실, 최준호 교수)

    <배고플 때 잠을 못 자는 이유: 아미노산 세린이 아세틸콜린 신호를 증진시켜 잠을 억제한다> 1. 배경지식 동물들은 성장과 신체의 다양한 대사 작용을 유지하기 위한 에너지와 영양소를 먹이로부터 얻으며, 굶게 되면 수면을 억제 시키면서까지 먹이를 찾는...
    Date2018.08.16 By생명과학과 Views4492
    Read More
  19. 허우성 (생체분자공학 연구실, 김학성 교수)

    1. 배경지식 빛을 이용한 세포의 다양한 신호전달 조절은 물리, 화학적 방법보다 비 침습적이고 빠르기 때문에 세포 기능 연구에 매우 효과적으로 활용될 수 있습니다. 그러나, 지금까지는 주로 자연에 존재하는 광 스위치 단백질에 의존하였기 때문에 많은 ...
    Date2018.07.30 By생명과학과 Views3789
    Read More
  20. 박은애 (식물학 연구실, 최길주 교수)

    <그림. 파이토크롬의 힘: 숲 속, 키 큰 나무 아래 그늘에 비추는 잠깐의 빛으로도 키 작은 식물은 푸르러진다> 1. 배경지식 파이토크롬B는 빛을 인지하여 식물의 발아, 새싹 발달, 개화 등을 조절하는 광수용체이다. 파이토크롬B가 식물의 광형태형성을 촉진...
    Date2018.07.26 By생명과학과 Views4520
    Read More
Board Pagination Prev 1 2 3 4 5 6 Next
/ 6