KAIST 생명과학과동창회
  • News & Events
  • News

News

Gut hormone triggers craving for more proteins

Gut hormone triggers craving for more proteins
Overview of the microbiome–gut–brain axis. CNMa is upregulated by Atf4 and Mitf (and possibly other unknown factors) during the deprivation of essential amino acids, and this acts on CNMaR-expressing neurons to stimulate the compensatory appetite for essential amino acids. Credit: The Korea Advanced Institute of Science and Technology (KAIST)

A new study led by KAIST researchers using fruit flies reveals how protein deficiency in the diet triggers cross talk between the gut and brain to induce a desire to eat foods rich in proteins or essential amino acids. This finding reported in the May 5 issue of Nature can lead to a better understanding of malnutrition in humans.

"All organisms require a balanced intake of carbohydrates, proteins, and fats for their well being," explained KAIST neuroscientist and professor Greg Seong-Bae Suh. "Taking in sufficient calories alone won't do the job, as it can still lead to severe forms of malnutrition including kwashiorkor, if the diet does not include enough proteins," he added.

Scientists already knew that inadequate  intake in organisms causes a preferential choice of foods rich in proteins or essential amino acids but they didn't know precisely how this happens. A group of researchers led by Professor Suh at KAIST and Professor Won-Jae Lee at Seoul National University (SNU) investigated this process in flies by examining the effects of different genes on food preference following protein deprivation.

The group found that protein deprivation triggered the release of a gut hormone called neuropeptide CNMamide (CNMa) from a specific population of enterocytes—the intestine lining cells. Until now, scientists have known that enterocytes release digestive enzymes into the intestine to help digest and absorb nutrients in the gut. "Our study showed that enterocytes have a more complex role than we previously thought," said Professor Suh.

Enterocytes respond to protein deprivation by releasing CNMa that conveys the nutrient status in the gut to the CNMa receptors on nerve cells in the brain. This then triggers a desire to eat foods containing .

Interestingly, the KAIST-SNU team also found that the microbiome -Acetobacterbacteria—present in the gut produces amino acids that can compensate for mild protein deficit in the diet. This basal level of amino acids provided by the microbiome modifies CNMa release and tempers the flies' compensatory desire to ingest more proteins.

The research team was able to further clarify two signaling pathways that respond to protein loss from the diet and ultimately produce the CNMa hormone in these specific enterocytes.

The team said that further studies are still needed to understand how CNMa communicates with its receptors in the brain, and whether this happens by directly activating nerve cells that link the gut to the brain or by indirectly activating the brain through blood circulation. Their research could provide insights into the understanding of similar process in mammals including humans.

"We chose to investigate a simple organism, the fly, which would make it easier for us to identify and characterize key nutrient sensors. Because all organisms have cravings for needed nutrients, the nutrient sensors and their pathways we identified in flies would also be relevant to those in mammals. We believe that this research will greatly advance our understanding of the causes of metabolic disease and eating-related disorders," Professor Suh added.

 

https://phys.org/news/2021-05-gut-hormone-triggers-craving-proteins.html

https://www.sciencecodex.com/gut-hormone-triggers-craving-more-proteins-673523

https://www.technologynetworks.com/neuroscience/news/gut-hormone-release-triggers-craving-for-protein-finds-fly-study-348858

https://www.miragenews.com/gut-hormone-triggers-craving-for-more-proteins-561159/

 

 


List of Articles
번호 제목 글쓴이 날짜 조회 수
360 김진우 교수, 김형태 박사 Cell Reports에 논문 게재(2015.10) / Professor Jin Woo Kim and Hyung-Tai Kim Ph.D. published paper in Cell reports (2015.10) file 생명과학과 2015.10.29 16570
359 최준호 교수 연구팀, 초파리 생체시계 유전자 'Twenty-four' 발견하여 Nature 발표 과사무실 2011.02.17 16367
358 김미영 교수, KAIST 이원조교수로 선정! 과사무실 2010.10.25 16337
357 이주용 박사, 김세윤 교수, PNAS지에 논문 게재 / PhD Joo-Yong Lee and Prof, Seyun Kim published a paper in PNAS 생명과학과 2016.07.04 16054
356 생명과학과 신임교원 강석조 박사 소개 (2010.01.01) 과사무실 2009.12.29 15946
355 허원도 교수, 박혜림 박사, 김나연 박사과정 학생 Nature Communications지 논문 게재(2017.06) file 생명과학과 2017.06.26 15901
354 김은준 교수, 올해의 KAIST인상 수상 file 과사무실 2015.01.06 15789
353 '마크로젠 과학자상'에 카이스트 김진우 교수 선정 생명과학과 2017.09.12 15682
352 전상용 교수, 2009~2014 기초학문 약학분야 9위 선정 생명과학과 2016.10.04 15668
351 김선창 교수 실험실(양경석 박사과정) ACS Catalysis 논문게재 (2015.07) / Kyung Seok Yang (prof. Sun Chang KIm's Lab) published a paper in ACS Catalysis 과사무실 2015.08.20 15601
350 생명과학과 신임교원 한진희 박사 소개 (2009.10.01) 과사무실 2009.10.06 15567
349 박우용 박사과정 학생(김미영 교수 실험실) Cancer Research 게재(2016.01) / Woo-Yong Park, a Ph.D candidate in Prof. Mi-Young Kim’s lab published a paper in Cancer Research (2016. 1) file 생명과학과 2016.01.22 15501
348 전상용 교수, 차세대 면역항암제 플랫폼 개발 위한 공동연구협약 체결 / Professor Sangyong Jon, make a research-cooperation contract for developing next-genreation anti-cancer drug platform 관리자 2016.01.08 15405
347 최준호 교수, 대한민국학술원상 수상! 과사무실 2012.09.18 15310
346 故 박태관 교수가 남기고 간 '흔적'…세계적 학술지 '주목' 과사무실 2011.05.12 15135
345 김대수 교수, 제 58회 3-1 문화상 수상자로 선정 file 생명과학과 2017.02.02 15132
344 한진희 교수님 실험실 (김지은 Post-doc, 권정태 박사과정) Nature Neuroscience 개제 과사무실 2014.01.21 15087
343 허원도 교수, 심장질환 원인신호 전달 메커니즘 규명 과사무실 2010.12.20 15041
342 김학성 교수, 이중재 박사 Angewandte Chemie에 논문 게재 (2015) / Prof. Hak-Sung Kin and PhD. Joong-Jae Lee published a paper at Angewandte Chemie (2015) 생명과학과 2015.08.31 15009
341 허원도 교수, Mol Cell 과 JMCB 에 논문 게재! 과사무실 2012.06.11 14987
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 19 Next
/ 19