KAIST 생명과학과동창회
  • News & Events
  • News

News

Antibiotic tolerance study paves way for new treatments


A new study identifies a mechanism that makes bacteria tolerant to penicillin and related antibiotics, findings that could lead to new therapies that boost the effectiveness of these treatments.


Antibiotic tolerance is the ability of bacteria to survive exposure to antibiotics, in contrast to antibiotic resistance, when bacteria actually grow in the presence of antibiotics. Tolerant bacteria can lead to infections that persist after treatment and may develop into resistance over time.

The study in mice, “A Multifaceted Cellular Damage Repair and Prevention Pathway Promotes High Level Tolerance to Beta-lactam Antibiotics,” published Feb. 3 in the journal EMBO Reports, reveals how tolerance occurs, thanks to a system that mitigates iron toxicity in bacteria that have been exposed to penicillin.


“We’re hoping we can design a drug or develop antibiotic adjuvants that would then basically kill off these tolerant cells,” said senior author Tobias Dörr, assistant professor of microbiology in the Weill Institute for Cell and Molecular Biology in the College of Agriculture and Life Sciences.


Co-authors included Ilana Brito, the Mong Family Sesquicentennial Faculty Scholar and assistant professor in the Meinig School of Biomedical Engineering in the College of Engineering, and Lars Westblade, associate professor of pathology and laboratory medicine at Weill Cornell Medicine.


Some bacteria, including the model bacterium used in the study, Vibrio cholerae, which causes cholera in humans, are remarkably tolerant to penicillin and related antibiotics, known as beta lactam antibiotics. It has been known for a long time that beta-lactam antibiotics break down bacterial cell walls, but how bacteria survive loss of their cell walls was poorly understood.


In the study, the researchers developed a V. cholerae mutant that lacked a two-component damage repair response system that controls a gene network encoding diverse functions. Without the system, known as VxrAB, when the cell wall is damaged by antibiotics, the transfer of electrons across the cell membrane goes awry, leading to electrons ending up on the wrong molecules. This misdirection causes hydrogen peroxide to accumulate in the cell, which changes the oxidation state of cellular iron and disrupts signals for the cell to tell how much iron it has.   


In the presence of hydrogen peroxide, the mutant bacteria cannot sense how much iron has been acquired, and it behaves as if it is iron-starved and seeks to acquire more iron. Left unchecked, these circumstances cause iron toxicity, which will kill the cell, according to the experiments the researchers conducted. In further tests with mutant V. cholerae bacteria, both in test tubes and in mice, the researchers showed that reducing the influx of iron increased the bacteria’s tolerance to beta lactams.


Fortunately for normal V. cholerae, exposure to antibiotics and the breakdown of the cell’s walls activate the VxrAB system, which works to repair cell walls and downregulates iron uptake systems, and thereby creates antibiotic tolerance. More study is needed to understand what triggers the VxrAB system in the presence of beta-lactam antibiotics.


The research opens the door for developing new drugs that could be combined with antibiotics to exploit oxidative damage and iron influx in tolerant bacteria. In future work, the researchers will search for parallel mechanisms of tolerance in other bacterial pathogens.


Jung-Ho Shin, a postdoctoral researcher in Dörr’s lab, is the paper’s first author. Co-authors include researchers from the Korea Advanced Institute of Science and Technology, the Korea Advanced Institute of Science and Technology, and the Intelligent Synthetic Biology Center in Korea.

The study was funded by the National Research Foundation of Korea and the National Institutes of Health.


https://news.cornell.edu/stories/2021/02/antibiotic-tolerance-study-paves-way-new-treatments

https://www.miragenews.com/antibiotic-tolerance-study-paves-way-for-new-516267/



List of Articles
번호 제목 글쓴이 날짜 조회 수
152 강창원 교수 교무처장 인사발령 과사무실 2004.08.03 12417
151 강은채 학생 창의활동상 수상 과사무실 2004.02.20 12926
150 靑 과기보좌관에 '여성과학인' 이공주 교수 임명 file 생명과학과 2019.02.22 5351
149 故 박태관 교수님의 명복을 빕니다. 과사무실 2011.04.11 13194
148 故 박태관 교수가 남기고 간 '흔적'…세계적 학술지 '주목' 과사무실 2011.05.12 15398
147 ‘올해의 KAIST 교수상’ - 김재섭 교수 과사무실 2005.12.30 13547
146 [허원도, 윤기준 교수님] 제51주년 개교기념식 개교기념 우수교원 포상 및 특별포상에서 학술상, 우수강의상 수상 생명과학과 2022.02.16 537
145 [허원도 교수님] 한국과학기술한림원 2024년도 정회원 선출 생명과학과 2023.12.04 117
144 [허원도 교수님] 빛으로 뇌 기능, 행동, 감정을 자유롭게 조절한다​ 생명과학과 2021.12.03 514
143 [허원도 교수님] 기억하고 인지하는 과정을 실시간 관찰하다 생명과학과 2024.01.10 232
142 [허원도 교수님] RNA 유전자 가위 정밀제어기술로 유전자 치료 성큼​ 생명과학과 2024.02.14 226
141 [허원도 교수님] RNA 유전자 가위 기술로 코로나바이러스 싹둑 생명과학과 2023.05.04 458
140 [한진희 교수님] 카이스트, 뉴런(신경 세포) 교체에 의한 기억저장 규명 생명과학과 2021.11.24 472
139 [한용만, 허원도 교수님] 광유전학적으로 인슐린 분비 조절성공…인간 전분화능 줄기세포 유래 췌도 오가노이드 개발 생명과학과 2023.03.24 508
138 [한국의 AI 추격자들] 서범석·백승욱 루닛 창업자 file 생명과학과 2020.10.30 2890
137 [한국경제] 한국인 생명과학자가 최근 발표한 주요 연구 과사무실 2006.11.13 17272
136 [한국경제] 고규영 교수 유력 바이오논문 6편 최다 발표 과사무실 2005.09.02 11929
135 [한국경제] STRONG KOREA-한국인 과학자가 뛴다...생명과학 과사무실 2006.11.13 17095
134 [한겨레] 생체시계 시간 맞추는 유전자 국내 연구팀이 첫 발견-김재섭 교수팀 과사무실 2005.10.20 10972
133 [한겨레] BK21 중간평가: 최우수사업단으로 선정 과사무실 2004.12.09 11355
Board Pagination Prev 1 ... 10 11 12 13 14 15 16 17 18 19 ... 22 Next
/ 22