KAIST 생명과학과동창회
  • News & Events
  • News

News

Astrocytes eat connections to maintain plasticity in adult brains

 

by The Korea Advanced Institute of Science and Technology (KAIST) 

  

 

    Astrocytes eat connections to maintain plasticity in adult brains

A 3-D image showing our synapse phagocytosis reporter in mouse hippocampus

 

Developing brains constantly sprout new neuronal connections called synapses as they learn and remember. Important connectionsthe ones that are repeatedly introduced, such as how to avoid dangerare nurtured and reinforced, while connections deemed unnecessary are pruned away. Adult brains undergo similar pruning, but it was unclear how or why synapses in the adult brain get eliminated.                      

    

Now, a team of KAIST researchers has found the mechanism underlying plasticity and, potentially, neurological disorders in adult brains. They published their findings on December 23 in Nature.

    

"Our findings have profound implications for our understanding of how neural circuits change during learning and memory, as well as in diseases," said paper author Won-Suk Chung, an assistant professor in the Department of Biological Sciences at KAIST. "Changes in synapse number have strong association with the prevalence of various neurological disorders, such as autism spectrum disorder, schizophrenia, frontotemporal dementia, and several forms of seizures."

    

Gray matter in the brain contains microglia and astrocytes, two complementary cells that, among other things, support neurons and synapses. Microglial are a frontline immunity defense, responsible for eating pathogens and dead cells, and astrocytes are star-shaped cells that help structure the brain and maintain homeostasis by helping to control signaling between neurons. According to Professor Chung, it is generally thought that microglial eat synapses as part of its clean-up effort in a process known as phagocytosis.

    

"Using novel tools, we show that, for the first time, it is astrocytes and not microglia that constantly eliminate excessive and unnecessary adult excitatory synaptic connections in response to neuronal activity," Professor Chung said. "Our paper challenges the general consensus in this field that microglia are the primary synapse phagocytes that control synapse numbers in the brain."

  

Professor Chung and his team developed a molecular sensor to detect synapse elimination by glial cells and quantified how often and by which type of cell synapses were eliminated. They also deployed it in a mouse model without MEGF10, the gene that allows astrocytes to eliminate synapses. Adult animals with this defective astrocytic phagocytosis had unusually increased excitatory synapse numbers in the hippocampus. Through a collaboration with Dr. Hyungju Park at KBRI, they showed that these increased excitatory synapses are functionally impaired, which cause defective learning and memory formation in MEGF10 deleted animals.

 

"Through this process, we show that, at least in the adult hippocampal CA1 region, astrocytes are the major player in eliminating synapses, and this astrocytic function is essential for controlling synapse number and plasticity," Chung said.

    

Professor Chung noted that researchers are only beginning to understand how synapse elimination affects maturation and homeostasis in the brain. In his group's preliminary data in other brain regions, it appears that each region has different rates of synaptic elimination by astrocytes. They suspect a variety of internal and external factors are influencing how astrocytes modulate each regional circuit, and plan to elucidate these variables.

 

"Our long-term goal is understanding how astrocyte-mediated synapse turnover affects the initiation and progression of various neurological disorders," Professor Chung said. "It is intriguing to postulate that modulating astrocytic phagocytosis to restore synaptic connectivity may be a novel strategy in treating various brain disorders."

 

https://www.sciencedaily.com/releases/2020/12/201224090406.htm 

https://sciencecodex.com/astrocytes-eat-connections-maintain-plasticity-adult-brains-664004  

https://medicalxpress.com/news/2020-12-astrocytes-plasticity-adult-brains.html 

https://www.news-medical.net/news/20201224/Researchers-find-mechanism-underlying-plasticity-in-adult-brains.aspx 

https://www.miragenews.com/astrocytes-eat-connections-to-maintain-plasticity-in-adult-brains/ 

https://microbiozindia.com/health-news/researchers-locate-mechanism-underlying-plasticity-in-grownup-brains/


List of Articles
번호 제목 글쓴이 날짜 조회 수
118 이중재 박사와 김학성 교수 연구팀, Theranostics에 표지 논문 발표 file 생명과학과 2017.08.18 12339
117 인선아 박사과정 학생. 제 18차 KHUPO 프로테오믹스 국제학술대회 수상 file 생명과학과 2018.04.13 12461
116 임대식 교수 국가지정연구실사업 신규과제 선정 과사무실 2005.03.30 11192
115 임대식 교수 논문 Nature Cell Biology 게재 1 과사무실 2004.01.26 13395
114 임대식 교수 외 3명 개교 34주년 기념 우수교원 포상 과사무실 2005.02.15 10642
113 임대식 교수, 2016년도 한국분자세포생물학회 정기학술대회 학술상 생명과학상 소개 강연 생명과학과 2016.10.10 12916
112 임대식 교수, EMBO Journal 에 논문 게재 (2012.3.7) 과사무실 2012.04.17 12353
111 임대식 교수, KAIST 지정 석좌교수 임용 과사무실 2014.02.25 11088
110 임대식 교수, PNAS 게재 (2013.4) 과사무실 2013.05.02 12278
109 임대식 교수, PNAS에 논문 게재! 과사무실 2010.04.21 11337
108 임대식 교수, 과학기술혁신본부장에 임명 file 생명과학과 2017.09.01 14835
107 임대식 교수, 교과부 ' 창의적연구진흥사업'의 신규 지원과제에 선정! 과사무실 2010.04.21 12077
106 임대식 교수, 김민철 박사 Cell Reports 에 논문 게재(2015.03) / Professor Dae-Sik Lim and Min Cheol Kim, Ph.D Publish in Cell Reports (2015.03) 과사무실 2015.04.06 13660
105 임대식 교수, 세포분열시 MST1 kinase의 새로운 암 억제 기능 발견 (2010. 3) 과사무실 2010.07.09 11291
104 임대식 교수, 천주교 서울대교구 생명위원회 제 14회 '생명의 신비상' 수상 file 생명과학과 2019.12.26 4172
103 임대식 교수, 한국과학상 대통령상 수상(2016. 12. 27) file 생명과학과 2016.12.28 12932
102 임대식 교수님 실험실 (김민철 박사과정) The Embo Journal 게재(2013.5) 과사무실 2013.07.05 14484
101 임대식 최길주 교수 승진 인사발령 과사무실 2004.09.01 13353
100 임정훈 박사 한국분자・세포생물학회 우수박사학위논문상 수상 과사무실 2004.09.09 13406
99 자연과학대학 우수 강의 교원 및 우수 직원 포상 과사무실 2007.03.29 10410
Board Pagination Prev 1 ... 9 10 11 12 13 14 15 16 17 18 19 Next
/ 19