KAIST 생명과학과동창회
  • News & Events
  • News

News

Antibiotic tolerance study paves way for new treatments

Posted on Mar 02, 2021, 3 p.m.


A new study identifies a mechanism that makes bacteria tolerant to penicillin and related antibiotics, findings that could lead to new therapies that boost the effectiveness of these treatments.


Antibiotic tolerance is the ability of bacteria to survive exposure to antibiotics, in contrast to antibiotic resistance, when bacteria actually grow in the presence of antibiotics. Tolerant bacteria can lead to infections that persist after treatment and may develop into resistance over time.


The study in mice, “A Multifaceted Cellular Damage Repair and Prevention Pathway Promotes High Level Tolerance to Beta-lactam Antibiotics,” published Feb. 3 in the journal EMBO Reports, reveals how tolerance occurs, thanks to a system that mitigates iron toxicity in bacteria that have been exposed to penicillin.


“We’re hoping we can design a drug or develop antibiotic adjuvants that would then basically kill off these tolerant cells,” said senior author Tobias Dörr, assistant professor of microbiology in the Weill Institute for Cell and Molecular Biology in the College of Agriculture and Life Sciences.


Co-authors included Ilana Brito, the Mong Family Sesquicentennial Faculty Scholar and assistant professor in the Meinig School of Biomedical Engineering in the College of Engineering, and Lars Westblade, associate professor of pathology and laboratory medicine at Weill Cornell Medicine.


Some bacteria, including the model bacterium used in the study, Vibrio cholerae, which causes cholera in humans, are remarkably tolerant to penicillin and related antibiotics, known as beta-lactam antibiotics. It has been known for a long time that beta-lactam antibiotics break down bacterial cell walls, but how bacteria survive loss of their cell walls was poorly understood.


In the study, the researchers developed a V. cholerae mutant that lacked a two-component damage repair response system that controls a gene network encoding diverse functions. Without the system, known as VxrAB, when the cell wall is damaged by antibiotics, the transfer of electrons across the cell membrane goes awry, leading to electrons ending up on the wrong molecules. This misdirection causes hydrogen peroxide to accumulate in the cell, which changes the oxidation state of cellular iron and disrupts signals for the cell to tell how much iron it has.  


In the presence of hydrogen peroxide, the mutant bacteria cannot sense how much iron has been acquired, and it behaves as if it is iron-starved and seeks to acquire more iron. Left unchecked, these circumstances cause iron toxicity, which will kill the cell, according to the experiments the researchers conducted. In further tests with mutant V. cholerae bacteria, both in test tubes and in mice, the researchers showed that reducing the influx of iron increased the bacteria’s tolerance to beta-lactams.


Fortunately for normal V. cholerae, exposure to antibiotics and the breakdown of the cell’s walls activate the VxrAB system, which works to repair cell walls and downregulates iron uptake systems, and thereby creates antibiotic tolerance. More study is needed to understand what triggers the VxrAB system in the presence of beta-lactam antibiotics.


The research opens the door for developing new drugs that could be combined with antibiotics to exploit oxidative damage and iron influx in tolerant bacteria. In future work, the researchers will search for parallel mechanisms of tolerance in other bacterial pathogens.


Jung-Ho Shin, a postdoctoral researcher in Dörr’s lab, is the paper’s first author. Co-authors include researchers from the Korea Advanced Institute of Science and Technology, the Korea Advanced Institute of Science and Technology, and the Intelligent Synthetic Biology Center in Korea.

The study was funded by the National Research Foundation of Korea and the National Institutes of Health.


https://www.worldhealth.net/news/antibiotic-tolerance-study-paves-way-new-treatments/


List of Articles
번호 제목 글쓴이 날짜 조회 수
92 송지준 교수, J.Am.Chem.Soc. 게재 (2013.10) 과사무실 2013.10.18 13915
91 조병관 교수, 세계경제포럼 Young Scientist 에 선정! 과사무실 2012.09.17 13922
90 [조선일보] 생명과학과 김정회교수팀...자일리톨 추출 신기술 개발 과사무실 2007.08.29 13990
89 [서울경제] 생물분야: KAIST 생물사업단 선정 과사무실 2004.12.09 14002
88 생명과학과 출신 곽유상 박사 ... 美 대학교수 됐다 과사무실 2007.07.31 14021
87 고병삼 학생 외 3명 Bioneer Award (2006) 수상 과사무실 2006.03.07 14122
86 최길주 교수 美 광생물학회 학술지 부편집장으로 선임 과사무실 2003.09.22 14138
85 [대덕넷] 노화억제 비밀 밝혀낸 김태국 교수...연구성과 집대성 '풀베팅' 과사무실 2006.06.12 14175
84 임정훈 박사 한국분자・세포생물학회 우수박사학위논문상 수상 과사무실 2004.09.09 14176
83 김대진 학생 (전상용 교수님 Lab) 생화학분자생물학회(KSBMB) Sanofi 신약 연구상 수상! 과사무실 2014.05.29 14195
82 생명과학과 신임교원 오병하 박사 부임 소개 (2009.9.1) 과사무실 2009.09.10 14207
81 정유진 석사과정 학생, 조병관 교수 Nature Communications 논문 게재(2016.06) / Yujin Jeong, a Master's degree student and Prof. Byung-Kwan Cho published a paper in Nature Communications (2016.06) 생명과학과 2016.06.07 14208
80 서연수 교수 생명과학상 수상 과사무실 2003.09.08 14253
79 KAIST 김태국 교수 신약개발 사이언스지 발표 과사무실 2005.07.01 14257
78 [매일경제] 김은준 교수"퍼즐놀이하듯 신경세포 연구" 과사무실 2003.09.23 14299
77 김은준 교수 연구팀, 자폐증 치료 가능성 열어 과사무실 2012.06.15 14306
76 허원도 교수, Nature Communications지 논문 게재 (2014. 6) 과사무실 2014.06.05 14309
75 송지준 교수, 김은지 박사 Molecular Cell에 논문 게재(2015) / Prof. Ji-Joon Song and PhD. Eun-Ji Kim published a paper at Molecular Cell (2015) 과사무실 2015.07.29 14396
74 김대수 교수 생명과학과 부임 과사무실 2004.09.01 14405
73 송지준 교수, PNAS 게재 (2012.8) 과사무실 2012.12.10 14413
Board Pagination Prev 1 ... 13 14 15 16 17 18 19 20 21 22 Next
/ 22