KAIST 생명과학과동창회
  • News & Events
  • News

News

항암제 표적 단백질을 약물 전달체로 쓴다?​



사진.png

< (왼쪽부터) 김진주 박사, 이준철 박사과정, 전상용 교수, 최명철 교수 >


우리 대학 바이오및뇌공학과와 생명과학과 공동연구팀이 항암제의 표적 단백질을 전달체로 이용하는 역발상 연구결과를 내놨다. 항암제를 이용한 암 치료에 새로운 가능성이 열릴 전망이다.


우리 대학 생명과학과 김진주 박사·바이오및뇌공학과 이준철 박사과정 학생이 공동 제1 저자로 그리고 생명과학과 전상용·바이오및뇌공학과 최명철 교수가 공동 교신저자로 참여한 이번 연구결과는 국제학술지 어드밴스드 머티리얼스(Advanced Materials, IF=27.4)’ 820표지논문으로 게재됐다. (논문명: Tubulin-based Nanotubes as Delivery Platform for Microtubule-Targeting Agents)


우리 몸속 세포가 분열할 때 염색체*들은 세포 한가운데에 정렬해 두 개의 딸세포로 나눠지는데 이 염색체들을 끌어당기는 끈이 바로 `미세소관(microtubule)'이다. 미세소관은 `튜불린(tubulin)' 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다.


염색체(Chromosome): DNA와 단백질이 응축하여 만드는 막대 형태의 구조체로 생명체의 모든 유전 정보를 지니고 있다.


미세소관을 표적으로 하는 항암 약물인 미세소관 표적 치료제(microtubule-targeting agents)’는 임상에서 다양한 암의 치료에 활용되고 있다. 이들은 암세포 미세소관에 결합해 앞서 언급한 끈 역할을 방해함으로써, 암세포의 분열을 억제, 결국 사멸을 유도한다.


튜불린 단백질에는 이 약물이 강하게 결합하는 고유의 결합 자리(binding site)가 여럿 존재한다. 연구진은 이 점에 착안해 표적 물질인 튜불린 단백질을 약물 전달체로 사용한다는 획기적인 아이디어를 세계 최초로 구현했다. 공동연구팀은 튜불린 나노 튜브(Tubulin-based NanoTube), 약자로 TNT로 명명한 전달체를 개발하고 항암 효능을 실험으로 확인한 것이다. TNT라는 이름에는 암 치료를 위한 폭발물이라는 의미도 담고 있다.


미세소관 표적 치료제는 TNT에 자발적으로 탑재된다. 약물 입장에서는 세포 내 미세소관에 결합하는 것과 다를 바가 없기 때문이다. 이는 항암제마다 적합한 전달체를 찾아야 했던 기존의 어려움을 해소해준다. TNT는 미세소관을 표적으로 하는 모든 약물을 탑재할 수 있는 잠재력을 가진만능 전달체인 셈이다.


연구진은 먼저 튜불린 단백질에 블록 혼성 중합체*PEG-PLL(pegylated poly-L-lysine)을 섞어 기본적인 TNT 구조를 만들었다. 여기서 튜불린은 빌딩 블록, PEG-PLL은 이들을 붙여주는 접착제이다. 그 다음, 도세탁셀(docetaxel), 라우리말라이드(laulimalide), 그리고 모노메틸아우리스타틴 E(monomethyl auristatin E) 3종의 약물이 TNT에 탑재됨을 보였다. 이 약물들은 실제 유방암, 두경부암, 위암, 방광암 등의 화학요법에 활용되고 있는 항암제들이다.


블록 혼성 중합체(Block copolymer): 두 종류 이상의 단위체로 이루어진 고분자 화합물로, 각 단위체들이 길게 반복되는 특징이 있다.


연구팀은 또 탑재되는 약물의 종류와 개수에 따라 TNT의 구조가 변할 뿐 아니라 약물 전달체로서의 물리·화학적 특성도 달라진다는 사실을 밝혀냈다. 이는 TNT가 탑재하려는 약물에 맞춰 자발적으로 형태를 변형하는적응형 전달체임을 보여주고 있다.


연구팀은 특히 항암제가 탑재된 TNT가 엔도좀-리소좀 경로(endo-lysosomal pathway)로 암세포에 들어가 뛰어난 항암 및 혈관 형성 억제 효과를 보인다는 점을 세포 및 동물을 대상으로 한 실험을 통해 확인했다.


적응형 만능 약물 전달체가 성공적으로 구현이 가능했던 배경에는 연구진이 보유한 튜불린 분자 제어 기술력 때문이다. 연구진은 튜불린 단백질을 일종의 레고 블록으로 보았다. 블록의 형태를 변형하고 쌓아 올리는 방식을 제어하여, 튜브 형태의 구조체를 조립하는 노하우를 축적해왔다. 연구팀은 이번 연구에서 포항 방사광 가속기의 소각 X-선 산란 장치를 이용해 TNT 구조를 나노미터(nm, 10억 분의 1미터) 이하의 정확도로 분석했다.



그림 1..png

< 그림 1. 항암제가 탑재된 TNT(튜불린 나노 튜브)가 만들어지는 과정 >


그림 2.png

< 그림 2. 항암제가 탑재된 TNT(튜불린 나노 튜브)의 항암 및 혈관 형성 억제 작용 과정 >


공동연구팀은 "이번 연구결과는 지금까지 학계에 보고되지 않은 완전히 새로운 방식의 약물 전달체를 구현했다는 점에서 의미가 크다ˮ고 밝혔다. 연구팀은 이어 "TNT는 현재까지 개발된, 또 향후 개발예정인 미세소관 표적 치료제까지 운송할 수 있는 범용적인 전달체이며, 다양한 항암제들의 시너지 효과(synergy effect)를 기대할 수 있는 `플랫폼 전달체'가 될 것ˮ이라고 강조했다.


이번 연구는 한국연구재단 (중견연구, 리더연구, 방사선기술, 바이오의료기술개발사업) 한국원자력연구원, KUSTAR-KAIST의 지원으로 수행됐다.


그림3.png

< 그림 3. Advanced Materials 8월 18일 Issue 표지 이미지 >





List of Articles
번호 제목 글쓴이 날짜 조회 수
363 [조병관 교수님] 한국연구재단, 노화 방지하고 회춘하는 방법 제시 생명과학과 2022.01.13 1200
362 [정현정 교수님] 유전자 가위로 생체 내 정밀한 유전자 교정에 의한 면역 항암 치료​ 생명과학과 2022.01.18 1209
361 전상용, 송지준 교수님_다양한 변이에도 면역 가능한 인플루엔자 백신 개발 생명과학과 2021.06.30 1214
360 [조원기 교수님] 세포 기능 결정에 핵심 역할 유전자 발현 단백질 찾았다 생명과학과 2021.12.24 1230
359 [김찬혁 교수님] 서울대병원, '꿈의 항암제' CAR-T 임상1상 본격 돌입 생명과학과 2022.02.04 1232
358 손종우 교수님_비정형 항정신병 약물에 의한 비만의 원인 규명​ 생명과학과 2021.05.17 1234
357 [김찬혁 교수님] 카이스트, 면역관문 신호 극복하는 차세대 CAR-T 세포 치료제 개발 생명과학과 2021.11.24 1239
356 [정원석 교수님] 제28회 삼성휴먼테크 논문대상에서 생명과학과 변유경 학생 은상 수상​ 생명과학과 2022.03.02 1276
355 [김상규 교수님] 식물 유전자 비밀 푸는 김상규 카이스트 교수 생명과학과 2021.11.24 1296
354 오병하 교수님_자연에 없는 고감도 단백질 센서 제작 플랫폼 개발 생명과학과 2021.02.08 1298
353 [김상규 교수님] 구글도 올라 탄 神으로 가는 길[과학을읽다] 생명과학과 2022.09.07 1298
352 [김학성 교수님] 카이스트, 거대 단백질 구조체를 레고 블록 쌓듯 조립하는 기술 개발 생명과학과 2021.11.24 1303
351 서성배 교수님_동물 뇌 신경세포가 과식 억제한다 생명과학과 2021.06.16 1314
350 한진희 교수님_기억이 만들어지는 원리 최초로 규명했다 생명과학과 2021.07.14 1323
349 [김진우 교수님, 민광욱 박사님] 왼쪽 눈이 본 것을 오른쪽 뇌가 알게 하라​ 생명과학과 2023.03.02 1328
348 김진우 교수님, 천주교 서울대교구 생명위원회 제 15회 '생명의 신비상' 수상 생명과학과 2021.02.18 1329
347 [이승재 교수님] 생체 노화 정도를 측정할 수 있는 새로운 RNA 지표 발견​ 생명과학과 2022.12.08 1335
346 [김상규 교수님] 꽃향기, 이젠 눈으로 보세요!​ 생명과학과 2022.05.10 1350
345 [김윤기 교수님] 새로운 단백질 번역기전 규명 file 생명과학과 2023.10.12 1359
344 김대수 교수님_“뇌의 본능적 욕구 참고 기다리는 아이, 사회적으로 성공” 생명과학과 2021.09.06 1364
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 23 Next
/ 23