KAIST 생명과학과동창회
  • News & Events
  • News

News

Astrocytes eat connections to maintain plasticity in adult brains

 

by The Korea Advanced Institute of Science and Technology (KAIST) 

  

 

    Astrocytes eat connections to maintain plasticity in adult brains

A 3-D image showing our synapse phagocytosis reporter in mouse hippocampus

 

Developing brains constantly sprout new neuronal connections called synapses as they learn and remember. Important connectionsthe ones that are repeatedly introduced, such as how to avoid dangerare nurtured and reinforced, while connections deemed unnecessary are pruned away. Adult brains undergo similar pruning, but it was unclear how or why synapses in the adult brain get eliminated.                      

    

Now, a team of KAIST researchers has found the mechanism underlying plasticity and, potentially, neurological disorders in adult brains. They published their findings on December 23 in Nature.

    

"Our findings have profound implications for our understanding of how neural circuits change during learning and memory, as well as in diseases," said paper author Won-Suk Chung, an assistant professor in the Department of Biological Sciences at KAIST. "Changes in synapse number have strong association with the prevalence of various neurological disorders, such as autism spectrum disorder, schizophrenia, frontotemporal dementia, and several forms of seizures."

    

Gray matter in the brain contains microglia and astrocytes, two complementary cells that, among other things, support neurons and synapses. Microglial are a frontline immunity defense, responsible for eating pathogens and dead cells, and astrocytes are star-shaped cells that help structure the brain and maintain homeostasis by helping to control signaling between neurons. According to Professor Chung, it is generally thought that microglial eat synapses as part of its clean-up effort in a process known as phagocytosis.

    

"Using novel tools, we show that, for the first time, it is astrocytes and not microglia that constantly eliminate excessive and unnecessary adult excitatory synaptic connections in response to neuronal activity," Professor Chung said. "Our paper challenges the general consensus in this field that microglia are the primary synapse phagocytes that control synapse numbers in the brain."

  

Professor Chung and his team developed a molecular sensor to detect synapse elimination by glial cells and quantified how often and by which type of cell synapses were eliminated. They also deployed it in a mouse model without MEGF10, the gene that allows astrocytes to eliminate synapses. Adult animals with this defective astrocytic phagocytosis had unusually increased excitatory synapse numbers in the hippocampus. Through a collaboration with Dr. Hyungju Park at KBRI, they showed that these increased excitatory synapses are functionally impaired, which cause defective learning and memory formation in MEGF10 deleted animals.

 

"Through this process, we show that, at least in the adult hippocampal CA1 region, astrocytes are the major player in eliminating synapses, and this astrocytic function is essential for controlling synapse number and plasticity," Chung said.

    

Professor Chung noted that researchers are only beginning to understand how synapse elimination affects maturation and homeostasis in the brain. In his group's preliminary data in other brain regions, it appears that each region has different rates of synaptic elimination by astrocytes. They suspect a variety of internal and external factors are influencing how astrocytes modulate each regional circuit, and plan to elucidate these variables.

 

"Our long-term goal is understanding how astrocyte-mediated synapse turnover affects the initiation and progression of various neurological disorders," Professor Chung said. "It is intriguing to postulate that modulating astrocytic phagocytosis to restore synaptic connectivity may be a novel strategy in treating various brain disorders."

 

https://www.sciencedaily.com/releases/2020/12/201224090406.htm 

https://sciencecodex.com/astrocytes-eat-connections-maintain-plasticity-adult-brains-664004  

https://medicalxpress.com/news/2020-12-astrocytes-plasticity-adult-brains.html 

https://www.news-medical.net/news/20201224/Researchers-find-mechanism-underlying-plasticity-in-adult-brains.aspx 

https://www.miragenews.com/astrocytes-eat-connections-to-maintain-plasticity-in-adult-brains/ 

https://microbiozindia.com/health-news/researchers-locate-mechanism-underlying-plasticity-in-grownup-brains/


List of Articles
번호 제목 글쓴이 날짜 조회 수
154 故 박태관 교수가 남기고 간 '흔적'…세계적 학술지 '주목' 과사무실 2011.05.12 15399
153 강창원, 김은준 교수팀, ADHD 유전자 찾았다 과사무실 2011.04.18 14623
152 故 박태관 교수님의 명복을 빕니다. 과사무실 2011.04.11 13195
151 최준호 교수, <디아이학술상> 수상! 과사무실 2011.04.06 11975
150 최준호 교수 연구팀, 초파리 생체시계 유전자 'Twenty-four' 발견하여 Nature 발표 과사무실 2011.02.17 16652
149 2011년 개교 40주년 기념 우수교원 포상 과사무실 2011.02.11 10991
148 최길주 교수, PNAS에 논문 게재! 과사무실 2011.01.12 12607
147 박태관 교수, 2010년 '올해의 KAIST인 상' 수상! 과사무실 2010.12.28 12142
146 허원도 교수, 심장질환 원인신호 전달 메커니즘 규명 과사무실 2010.12.20 15377
145 도민재, 박재윤, 정현정 (박태관 교수 lab), 2010' 특허전략 유니버시아드 장려상 수상! 과사무실 2010.12.20 12151
144 김경란, 김민진, 김태형 (강창원 교수 lab) 2010’캠퍼스 특허전략 유니버시아드 대회 장려상 수상! 과사무실 2010.12.13 15117
143 강창원 교수, 2010년 국가연구개발 우수성과 100선에 선정 과사무실 2010.12.13 11454
142 한용만 교수(박상욱 박사과정), Blood 지에 논문 게재! 과사무실 2010.11.19 15118
141 강창원 교수, 2010년 기초연구 우수성과 선정! 과사무실 2010.11.08 11778
140 김학성 교수, 2010년 한국바이오칩학회 학술대상 수상! 과사무실 2010.11.01 11245
139 김미영 교수, KAIST 이원조교수로 선정! 과사무실 2010.10.25 18935
138 김고운 박사과정생(조경옥 교수 Lab), 2010년 한국분자세포생물학회 우수 포스터상 수상 과사무실 2010.10.15 15218
137 김미영 교수, 박서영 박사과정생(Prof. Walton Jones Lab), '청암과학펠로' 선정 과사무실 2010.10.11 19407
136 학사과정 김혜림, 국립암센터 인턴쉽 포스터발표 최우수상 수상 과사무실 2010.09.07 13557
135 조홍석 박사과정 학생, Traveling Award 및 Best Presentation Award 수상 과사무실 2010.07.16 11606
Board Pagination Prev 1 ... 10 11 12 13 14 15 16 17 18 19 ... 22 Next
/ 22