KAIST 생명과학과동창회
  • News & Events
  • News

News

Growing up curious in the countryside leads to tools for manipulating endogenous proteins.

 

 

허원도 교수님 사진.jpg



Won Do Heo

“Good ideas come to me when I am very comfortable, when I am very happy,” says Won Do Heo, who is on the biology faculty at Korea Advanced Institute of Science and Technology (KAIST), and is a neuroscience fellow at the Institute for Basic Science, both in Daejon, Republic of Korea. An idea might come to him in a lab conversation, at a seminar or conference, when he is jogging, on one of his daily walks on a hill, or in the sauna at home.

 

It was a Korean national holiday and Heo was alone in the lab, thinking. He had spent a decade developing and using optogenetic tools. Suddenly, he realized how he might finally turn intrabodies, which are antibodies used to study intracellular proteins, into inducible tools.

 

Heo and his lab converted the idea into two classes of tools to target and manipulate proteins inside cells: optobodies, which can be activated by light; and chemobodies, which can be activated by small molecules. These tools leverage nanobodies, based on camelid antibodies, that are prized in cell biology for being soluble and small they’re around half the size of a green fluorescent protein molecule.

 

During that holiday musing, Heo had figured out at which cysteine residues he could split the nanobody to generate two inactive parts that do not bind a targeted protein. He checked the nanobody structure, and experiments got underway. The split structure lets an experimenter use light to, for example, activate or inhibit a protein at the cell membrane, at an organelle or in the cell nucleus. When the nanobody halves are separate, it’s like having only one chopstick for a meal, he says. Work only gets done when the other half enters the scene.

 

The tools offer high-resolution temporal and spatial information about endogenous proteins, says Heo. With optobodies, light can help with manipulating a targeted protein and thus shape cell function. The team’s chemobody would be good for an in vivo experiment, he says. Such studies, for example in neurobiology, are on his to-do list.

 

The lab used blue light to activate the optobody, but Heo believes he can get the tools to work with infrared light, too. Although there are many types of nanobodies, he believes the tools will work across this antibody class and for many types of questions. The chosen split site is in the antibody’s highly conserved domain.

 

In his lab, says Heo, tool development involves intense testing, which takes a collaborative lab culture. Lab members not involved in a project are a tool’s first users. This arrangement is not easy given his students’ eagerness to publish quickly. But Heo seeks generalizable, broadly applicable tools. “I don’t make very special, very tricky things,” he says, which might only work in a few labs.

 

In his lab, Heo encourages his students to explore projects that intrigue them and that will make them happy during their years in his lab. “If they are not happy with something, I won’t be happy, too.”

 

Heo grew up on a farm in the country. “I didn’t really have the plan to be a professorresearcher at the time,” he says. He played with his dog, rabbit and cows, and was curious about how they interacted and cared for their young. He learned about rice and barley farming. “It’s not textbook, it’s just nature,” he says. In high school, he began breeding birds: peacocks, turkeys, pheasants, parrots and canaries.

 

Even college was not in his plans, but curiosity led him to Gyeongsang National University. “I realized that I had to step up to another level,” he says. Heo studied plant biology and switched to biochemistry in graduate school.

 

For his postdoctoral fellowship, curiosity was again a driver. He wanted to work in mammalian systems, and joined the Duke University lab of Tobias Meyer. Heo followed Meyer to Stanford University where, after a few years, he was promoted to staff researcher. After nine years in California, Heo joined KAIST and chose to focus on optogenetics.

 

Heo feels he can now combine his experience across fields: plant biology, cell biology, cell signaling and neurobiology. As Heo completed his PhD, he remembers realizing that many plant proteins are not present in mammals, which might make them useful tools, he says. This idea has emerged as a cornerstone of optogenetics.

 

Optogenetics has taken cell biology labs beyond observation, which might miss half of the actual cellular events. Cells “are talking to each other, communicating to each other,” he says. The ability to activate or deactivate proteins with light gives labs a way to explore cell biology more deeply and can help them, for example, determine proteins crucial to the cell cycle.

 

“If they are not happy with something, I won’t be happy.”

 

“I admire Won Do’s work for its creativity; he has applied optical control by the cryptochromeCIB1 interaction in very imaginative ways,” says Heo’s friend and colleague, Stanford University researcher Michael Lin. Heo and his students don’t shy away from the hard work necessary to realize their ideas, says Lin. “Developing truly new methods is high-risk and time-consuming, but Won Do has shown that the high rewards make it worth it.”



출처: Nature Methods > This month >

       https://www.nature.com/articles/s41592-019-0626-1


List of Articles
번호 제목 글쓴이 날짜 조회 수
332 [이승재 교수님] 생체 에너지 발전소 부산물로 병원균 감염 제어​ 생명과학과 2023.07.11 278
331 [이승희 교수님] 신경전달물질 소마토스타틴의 알츠하이머 독성 개선효과 발견​ 생명과학과 2022.07.25 404
330 [이주형 학부생] 포스텍SF 어워드에서 생명과학과 학부생 이주형, 단편 부문 가작 선정 생명과학과 2022.02.10 500
329 [임정훈 동문교수님] “초파리로 루게릭병 잡는다” 임정훈 분자생물학자 생명과학과 2022.04.04 830
328 [전상용 교수님] 비알콜성 지방간염은 이제 MRI로 진단하세요 생명과학과 2024.04.02 59
327 [전상용 교수님] 탄수화물 나노입자로 염증성 장 질환 치료하다​ 생명과학과 2023.08.02 272
326 [전상용 교수님] 항암치료용 인공탄수화물 기반 나노의약 개발​ 생명과학과 2022.07.12 456
325 [전상용, 조병관 교수님] 나노입자로 염증부터 면역치료까지 가능 생명과학과 2023.06.21 417
324 [정원석 교수님] 아동 학대로 인한 정신질환 발병 원인 최초 규명​ 생명과학과 2023.08.01 294
323 [정원석 교수님] 제28회 삼성휴먼테크 논문대상에서 생명과학과 변유경 학생 은상 수상​ 생명과학과 2022.03.02 590
322 [정원석 교수님] 카이스트, 노화된 뇌에서 생겨난 비정상적 별아교세포 ‘아프다(APDA)’발견 생명과학과 2022.08.08 602
321 [정인경 교수님] 기저 질환이 없는 코로나19 환자의 중증 신규 유전적 위험 인자 규명 생명과학과 2022.09.29 336
320 [정인경 교수님] 암, 노화 등에 미치는 게놈 3차 구조의 신규 원리 발견​ 생명과학과 2023.04.10 348
319 [정인경 교수님] 인공지능 기반 대장암 3차원 게놈 지도 최초 해독​ 생명과학과 2023.07.25 191
318 [정인경 교수님] 제17회 아산의학상 젊은의학자 부문 수상 생명과학과 2024.03.22 92
317 [정인경 교수님] 파킨슨병 발병 3차원 게놈 지도 최초 제시​ 생명과학과 2023.05.08 439
316 [정현정 교수님] 암세포만 골라 유전자 교정 치료하는 신약 개발​ 생명과학과 2024.04.08 109
315 [정현정 교수님] 유전자 가위로 생체 내 정밀한 유전자 교정에 의한 면역 항암 치료​ 생명과학과 2022.01.18 639
314 [정현정 교수님] 유전자 가위와 약물로 동시에 암을 잡는 신약 개발 생명과학과 2023.08.03 699
313 [조병관 교수님 연구실] 2022년 안전관리 우수연구실 선정 file 생명과학과 2023.01.27 291
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 22 Next
/ 22