KAIST 생명과학과동창회
  • News & Events
  • News

News

Astrocytes eat connections to maintain plasticity in adult brains

 

by The Korea Advanced Institute of Science and Technology (KAIST) 

  

 

    Astrocytes eat connections to maintain plasticity in adult brains

A 3-D image showing our synapse phagocytosis reporter in mouse hippocampus

 

Developing brains constantly sprout new neuronal connections called synapses as they learn and remember. Important connectionsthe ones that are repeatedly introduced, such as how to avoid dangerare nurtured and reinforced, while connections deemed unnecessary are pruned away. Adult brains undergo similar pruning, but it was unclear how or why synapses in the adult brain get eliminated.                      

    

Now, a team of KAIST researchers has found the mechanism underlying plasticity and, potentially, neurological disorders in adult brains. They published their findings on December 23 in Nature.

    

"Our findings have profound implications for our understanding of how neural circuits change during learning and memory, as well as in diseases," said paper author Won-Suk Chung, an assistant professor in the Department of Biological Sciences at KAIST. "Changes in synapse number have strong association with the prevalence of various neurological disorders, such as autism spectrum disorder, schizophrenia, frontotemporal dementia, and several forms of seizures."

    

Gray matter in the brain contains microglia and astrocytes, two complementary cells that, among other things, support neurons and synapses. Microglial are a frontline immunity defense, responsible for eating pathogens and dead cells, and astrocytes are star-shaped cells that help structure the brain and maintain homeostasis by helping to control signaling between neurons. According to Professor Chung, it is generally thought that microglial eat synapses as part of its clean-up effort in a process known as phagocytosis.

    

"Using novel tools, we show that, for the first time, it is astrocytes and not microglia that constantly eliminate excessive and unnecessary adult excitatory synaptic connections in response to neuronal activity," Professor Chung said. "Our paper challenges the general consensus in this field that microglia are the primary synapse phagocytes that control synapse numbers in the brain."

  

Professor Chung and his team developed a molecular sensor to detect synapse elimination by glial cells and quantified how often and by which type of cell synapses were eliminated. They also deployed it in a mouse model without MEGF10, the gene that allows astrocytes to eliminate synapses. Adult animals with this defective astrocytic phagocytosis had unusually increased excitatory synapse numbers in the hippocampus. Through a collaboration with Dr. Hyungju Park at KBRI, they showed that these increased excitatory synapses are functionally impaired, which cause defective learning and memory formation in MEGF10 deleted animals.

 

"Through this process, we show that, at least in the adult hippocampal CA1 region, astrocytes are the major player in eliminating synapses, and this astrocytic function is essential for controlling synapse number and plasticity," Chung said.

    

Professor Chung noted that researchers are only beginning to understand how synapse elimination affects maturation and homeostasis in the brain. In his group's preliminary data in other brain regions, it appears that each region has different rates of synaptic elimination by astrocytes. They suspect a variety of internal and external factors are influencing how astrocytes modulate each regional circuit, and plan to elucidate these variables.

 

"Our long-term goal is understanding how astrocyte-mediated synapse turnover affects the initiation and progression of various neurological disorders," Professor Chung said. "It is intriguing to postulate that modulating astrocytic phagocytosis to restore synaptic connectivity may be a novel strategy in treating various brain disorders."

 

https://www.sciencedaily.com/releases/2020/12/201224090406.htm 

https://sciencecodex.com/astrocytes-eat-connections-maintain-plasticity-adult-brains-664004  

https://medicalxpress.com/news/2020-12-astrocytes-plasticity-adult-brains.html 

https://www.news-medical.net/news/20201224/Researchers-find-mechanism-underlying-plasticity-in-adult-brains.aspx 

https://www.miragenews.com/astrocytes-eat-connections-to-maintain-plasticity-in-adult-brains/ 

https://microbiozindia.com/health-news/researchers-locate-mechanism-underlying-plasticity-in-grownup-brains/


List of Articles
번호 제목 글쓴이 날짜 조회 수
352 정유진 석사과정 학생, 조병관 교수 Nature Communications 논문 게재(2016.06) / Yujin Jeong, a Master's degree student and Prof. Byung-Kwan Cho published a paper in Nature Communications (2016.06) 생명과학과 2016.06.07 14204
351 생명과학과 신임교원 오병하 박사 부임 소개 (2009.9.1) 과사무실 2009.09.10 14203
350 김대진 학생 (전상용 교수님 Lab) 생화학분자생물학회(KSBMB) Sanofi 신약 연구상 수상! 과사무실 2014.05.29 14194
349 [대덕넷] 노화억제 비밀 밝혀낸 김태국 교수...연구성과 집대성 '풀베팅' 과사무실 2006.06.12 14175
348 임정훈 박사 한국분자・세포생물학회 우수박사학위논문상 수상 과사무실 2004.09.09 14174
347 최길주 교수 美 광생물학회 학술지 부편집장으로 선임 과사무실 2003.09.22 14137
346 고병삼 학생 외 3명 Bioneer Award (2006) 수상 과사무실 2006.03.07 14120
345 생명과학과 출신 곽유상 박사 ... 美 대학교수 됐다 과사무실 2007.07.31 14021
344 [서울경제] 생물분야: KAIST 생물사업단 선정 과사무실 2004.12.09 14002
343 [조선일보] 생명과학과 김정회교수팀...자일리톨 추출 신기술 개발 과사무실 2007.08.29 13990
342 조병관 교수, 세계경제포럼 Young Scientist 에 선정! 과사무실 2012.09.17 13921
341 송지준 교수, J.Am.Chem.Soc. 게재 (2013.10) 과사무실 2013.10.18 13915
340 김선창 교수 송암학술상 수상 과사무실 2003.12.23 13855
339 "당뇨병 합병증 치료단백질 개발!" - 고규영교수팀 과사무실 2006.03.14 13846
338 김진우 교수, 김남석 박사 eLife지 논문 발표 (2014. 9) 과사무실 2014.09.11 13813
337 허원도 교수, Trang T. T. Nguyen박사 PNAS지에 논문 게재(2016.08) / Prof. Won Do Heo, PhD. Trang T. T. Nguyen publish an article in PNAS (2016.08) 생명과학과 2016.08.25 13794
336 "어, 해독제가 항생제로 바뀌네" - 김학성 교수팀 단백질 설계기술 개발 과사무실 2006.02.06 13733
335 최길주 교수, 김정현 박사과정 학생 The Plant Cell 게재(2016.06) / Prof. Giltsu Choi and Junghyun Kim, a Ph.D. candidate published a paper in The Plant Cell (2016.06) 생명과학과 2016.07.05 13694
334 서라민 박사과정 학생. 제 18차 KHUPO 프로테오믹스 국제학술대회 수상 file 생명과학과 2018.04.30 13693
333 생명과학과 김정회 교수... 대전광역시 주최 이달의 과학기술인 상 선정 과사무실 2007.10.05 13692
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 22 Next
/ 22