KAIST 생명과학과동창회
  • News & Events
  • News

News

Astrocytes eat connections to maintain plasticity in adult brains

 

by The Korea Advanced Institute of Science and Technology (KAIST) 

  

 

    Astrocytes eat connections to maintain plasticity in adult brains

A 3-D image showing our synapse phagocytosis reporter in mouse hippocampus

 

Developing brains constantly sprout new neuronal connections called synapses as they learn and remember. Important connectionsthe ones that are repeatedly introduced, such as how to avoid dangerare nurtured and reinforced, while connections deemed unnecessary are pruned away. Adult brains undergo similar pruning, but it was unclear how or why synapses in the adult brain get eliminated.                      

    

Now, a team of KAIST researchers has found the mechanism underlying plasticity and, potentially, neurological disorders in adult brains. They published their findings on December 23 in Nature.

    

"Our findings have profound implications for our understanding of how neural circuits change during learning and memory, as well as in diseases," said paper author Won-Suk Chung, an assistant professor in the Department of Biological Sciences at KAIST. "Changes in synapse number have strong association with the prevalence of various neurological disorders, such as autism spectrum disorder, schizophrenia, frontotemporal dementia, and several forms of seizures."

    

Gray matter in the brain contains microglia and astrocytes, two complementary cells that, among other things, support neurons and synapses. Microglial are a frontline immunity defense, responsible for eating pathogens and dead cells, and astrocytes are star-shaped cells that help structure the brain and maintain homeostasis by helping to control signaling between neurons. According to Professor Chung, it is generally thought that microglial eat synapses as part of its clean-up effort in a process known as phagocytosis.

    

"Using novel tools, we show that, for the first time, it is astrocytes and not microglia that constantly eliminate excessive and unnecessary adult excitatory synaptic connections in response to neuronal activity," Professor Chung said. "Our paper challenges the general consensus in this field that microglia are the primary synapse phagocytes that control synapse numbers in the brain."

  

Professor Chung and his team developed a molecular sensor to detect synapse elimination by glial cells and quantified how often and by which type of cell synapses were eliminated. They also deployed it in a mouse model without MEGF10, the gene that allows astrocytes to eliminate synapses. Adult animals with this defective astrocytic phagocytosis had unusually increased excitatory synapse numbers in the hippocampus. Through a collaboration with Dr. Hyungju Park at KBRI, they showed that these increased excitatory synapses are functionally impaired, which cause defective learning and memory formation in MEGF10 deleted animals.

 

"Through this process, we show that, at least in the adult hippocampal CA1 region, astrocytes are the major player in eliminating synapses, and this astrocytic function is essential for controlling synapse number and plasticity," Chung said.

    

Professor Chung noted that researchers are only beginning to understand how synapse elimination affects maturation and homeostasis in the brain. In his group's preliminary data in other brain regions, it appears that each region has different rates of synaptic elimination by astrocytes. They suspect a variety of internal and external factors are influencing how astrocytes modulate each regional circuit, and plan to elucidate these variables.

 

"Our long-term goal is understanding how astrocyte-mediated synapse turnover affects the initiation and progression of various neurological disorders," Professor Chung said. "It is intriguing to postulate that modulating astrocytic phagocytosis to restore synaptic connectivity may be a novel strategy in treating various brain disorders."

 

https://www.sciencedaily.com/releases/2020/12/201224090406.htm 

https://sciencecodex.com/astrocytes-eat-connections-maintain-plasticity-adult-brains-664004  

https://medicalxpress.com/news/2020-12-astrocytes-plasticity-adult-brains.html 

https://www.news-medical.net/news/20201224/Researchers-find-mechanism-underlying-plasticity-in-adult-brains.aspx 

https://www.miragenews.com/astrocytes-eat-connections-to-maintain-plasticity-in-adult-brains/ 

https://microbiozindia.com/health-news/researchers-locate-mechanism-underlying-plasticity-in-grownup-brains/


List of Articles
번호 제목 글쓴이 날짜 조회 수
340 [동아일보] 노화억제 신약후보물질 개발…김태국 교수팀 과사무실 2006.06.12 11228
339 [동아일보] 뇌 신호전달 작동물질 첫 발견-김은준교수팀 과사무실 2006.04.20 11932
338 [동아일보] 위암 당뇨 ‘맞춤 치료’ 길 열린다…SNP 지도 첫 완성 과사무실 2006.12.14 13260
337 [동아일보] 한국 과학에 세계가 또 놀라다 -정종경교수팀 과사무실 2006.05.04 14470
336 [동아일보] 혈관형성 촉진제 이용 만성 신장질환 고쳐요-고규영교수 과사무실 2006.08.03 11479
335 [루닛 서범석 대표] 바이오업계 유니콘 기대 루닛, 서범석 '치료 예측 AI' 고도화 박차 생명과학과 2022.04.27 308
334 [매일경제] 고규영 교수 "혈관생성물질 세계 첫 개발" 과사무실 2004.04.14 13359
333 [매일경제] 관절염 맞춤치료 길 열린다 - 강창원 교수·한양대 의대 배상철교수 공동연구팀 과사무실 2005.03.30 11772
332 [매일경제] 김은준 교수"퍼즐놀이하듯 신경세포 연구" 과사무실 2003.09.23 14198
331 [매일경제] 김학성 오은규 연구팀 나노입자 특성 이용해 단백질 상호작용 분석 과사무실 2005.03.21 10809
330 [메디포럼 정재언 대표] 메디포럼, 정재언 연구소장 신임 대표이사 선임…“임상 R&D 중심 경영 집중” 생명과학과 2022.03.14 236
329 [서성배 교수님] 육감 센서 찾는 서성배 카이스트 생명과학부 교수 생명과학과 2022.03.03 614
328 [서연수 교수님] ㈜엔지노믹스, 생명과학과에 발전기금 24억 기부​ 생명과학과 2022.10.14 304
327 [서울경제] 생물분야: KAIST 생물사업단 선정 과사무실 2004.12.09 13898
326 [손종우 교수님] 서울의대동창회, 제25회 함춘학술상 수상자 선정 생명과학과 2022.03.08 318
325 [송지준 교수님] 헌팅턴병 발병원인 제거를 위한 치료제 개발 방법 제시​ 생명과학과 2022.09.02 221
324 [송지준 교수님] 호르몬 조절 원리와 구조 밝혀냈다 생명과학과 2022.05.06 506
323 [연합뉴스]신종 박테리아 5개중 1개꼴 한국과학자 발견...이성택교수 과사무실 2007.04.04 14910
322 [오병하 교수님] 뉴스의인물/ KAIST 생명과학과 오병하 교수 생명과학과 2022.03.21 417
321 [오병하 교수님] 오미크론에도 듣는 범용 항체, 국내에서 개발 생명과학과 2022.02.04 308
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 20 Next
/ 20