KAIST 생명과학과동창회
  • News & Events
  • News

News

Growing up curious in the countryside leads to tools for manipulating endogenous proteins.

 

 

허원도 교수님 사진.jpg



Won Do Heo

“Good ideas come to me when I am very comfortable, when I am very happy,” says Won Do Heo, who is on the biology faculty at Korea Advanced Institute of Science and Technology (KAIST), and is a neuroscience fellow at the Institute for Basic Science, both in Daejon, Republic of Korea. An idea might come to him in a lab conversation, at a seminar or conference, when he is jogging, on one of his daily walks on a hill, or in the sauna at home.

 

It was a Korean national holiday and Heo was alone in the lab, thinking. He had spent a decade developing and using optogenetic tools. Suddenly, he realized how he might finally turn intrabodies, which are antibodies used to study intracellular proteins, into inducible tools.

 

Heo and his lab converted the idea into two classes of tools to target and manipulate proteins inside cells: optobodies, which can be activated by light; and chemobodies, which can be activated by small molecules. These tools leverage nanobodies, based on camelid antibodies, that are prized in cell biology for being soluble and small they’re around half the size of a green fluorescent protein molecule.

 

During that holiday musing, Heo had figured out at which cysteine residues he could split the nanobody to generate two inactive parts that do not bind a targeted protein. He checked the nanobody structure, and experiments got underway. The split structure lets an experimenter use light to, for example, activate or inhibit a protein at the cell membrane, at an organelle or in the cell nucleus. When the nanobody halves are separate, it’s like having only one chopstick for a meal, he says. Work only gets done when the other half enters the scene.

 

The tools offer high-resolution temporal and spatial information about endogenous proteins, says Heo. With optobodies, light can help with manipulating a targeted protein and thus shape cell function. The team’s chemobody would be good for an in vivo experiment, he says. Such studies, for example in neurobiology, are on his to-do list.

 

The lab used blue light to activate the optobody, but Heo believes he can get the tools to work with infrared light, too. Although there are many types of nanobodies, he believes the tools will work across this antibody class and for many types of questions. The chosen split site is in the antibody’s highly conserved domain.

 

In his lab, says Heo, tool development involves intense testing, which takes a collaborative lab culture. Lab members not involved in a project are a tool’s first users. This arrangement is not easy given his students’ eagerness to publish quickly. But Heo seeks generalizable, broadly applicable tools. “I don’t make very special, very tricky things,” he says, which might only work in a few labs.

 

In his lab, Heo encourages his students to explore projects that intrigue them and that will make them happy during their years in his lab. “If they are not happy with something, I won’t be happy, too.”

 

Heo grew up on a farm in the country. “I didn’t really have the plan to be a professorresearcher at the time,” he says. He played with his dog, rabbit and cows, and was curious about how they interacted and cared for their young. He learned about rice and barley farming. “It’s not textbook, it’s just nature,” he says. In high school, he began breeding birds: peacocks, turkeys, pheasants, parrots and canaries.

 

Even college was not in his plans, but curiosity led him to Gyeongsang National University. “I realized that I had to step up to another level,” he says. Heo studied plant biology and switched to biochemistry in graduate school.

 

For his postdoctoral fellowship, curiosity was again a driver. He wanted to work in mammalian systems, and joined the Duke University lab of Tobias Meyer. Heo followed Meyer to Stanford University where, after a few years, he was promoted to staff researcher. After nine years in California, Heo joined KAIST and chose to focus on optogenetics.

 

Heo feels he can now combine his experience across fields: plant biology, cell biology, cell signaling and neurobiology. As Heo completed his PhD, he remembers realizing that many plant proteins are not present in mammals, which might make them useful tools, he says. This idea has emerged as a cornerstone of optogenetics.

 

Optogenetics has taken cell biology labs beyond observation, which might miss half of the actual cellular events. Cells “are talking to each other, communicating to each other,” he says. The ability to activate or deactivate proteins with light gives labs a way to explore cell biology more deeply and can help them, for example, determine proteins crucial to the cell cycle.

 

“If they are not happy with something, I won’t be happy.”

 

“I admire Won Do’s work for its creativity; he has applied optical control by the cryptochromeCIB1 interaction in very imaginative ways,” says Heo’s friend and colleague, Stanford University researcher Michael Lin. Heo and his students don’t shy away from the hard work necessary to realize their ideas, says Lin. “Developing truly new methods is high-risk and time-consuming, but Won Do has shown that the high rewards make it worth it.”



출처: Nature Methods > This month >

       https://www.nature.com/articles/s41592-019-0626-1


List of Articles
번호 제목 글쓴이 날짜 조회 수
372 [김보람 박사님(서성배 교수님 연구실)] 2022년 국가연구개발 우수성과 100선 선정 file 생명과학과 2022.11.09 548
371 [이승재 교수님 연구실] 과기정통부, ‘2022년도 건강한 연구실’ 10개 선정 생명과학과 2022.12.12 549
370 한진희 교수님_ 치매 치료에 열 올리는 KAIST·연구기관 생명과학과 2021.08.18 558
369 서성배 교수님_동물의 식습관을 조절하는 원리 규명해 네이처 게재​ 생명과학과 2021.05.11 561
368 2021 대성해강미생물포럼_좌장 조병관 교수, 연사 김대수 교수_21.09.28(화) 13:00~ file 생명과학과 2021.09.13 564
367 [이승재 교수님] 생체 노화 정도를 측정할 수 있는 새로운 RNA 지표 발견​ 생명과학과 2022.12.08 584
366 [정원석 교수님] 제28회 삼성휴먼테크 논문대상에서 생명과학과 변유경 학생 은상 수상​ 생명과학과 2022.03.02 590
365 [이승재 교수님] 국내 연구팀, 예쁜꼬마선충을 이용 새로운 항노화 단백질 찾아 생명과학과 2021.12.13 591
364 손종우 교수님_비정형 항정신병 약물에 의한 비만의 원인 규명​ 생명과학과 2021.05.17 594
363 [조원기 교수님] 세포 기능 결정에 핵심 역할 유전자 발현 단백질 찾았다 생명과학과 2021.12.24 602
362 [정원석 교수님] 카이스트, 노화된 뇌에서 생겨난 비정상적 별아교세포 ‘아프다(APDA)’발견 생명과학과 2022.08.08 602
361 [김찬혁 교수님] 서울대병원, '꿈의 항암제' CAR-T 임상1상 본격 돌입 생명과학과 2022.02.04 616
360 2021 Agrwal Award 시상식이 9월 9일(목) 오후 4시_이준혁 학생(정원석 교수) file 생명과학과 2021.09.06 617
359 [김상규 교수님] 식물 유전자 비밀 푸는 김상규 카이스트 교수 생명과학과 2021.11.24 619
358 [김대수 교수님] 제약바이오협회, ‘KPBMA-MIT 생명과학 컨퍼런스’ 개최 생명과학과 2022.03.28 620
357 [김상규 교수님] 구글도 올라 탄 神으로 가는 길[과학을읽다] 생명과학과 2022.09.07 624
356 [김찬혁, 정원석 교수님] 심각한 염증 부작용 없앤 새로운 알츠하이머병 치료제 개발​ 생명과학과 2022.08.22 632
355 [김찬혁 교수님] 카이스트, 면역관문 신호 극복하는 차세대 CAR-T 세포 치료제 개발 생명과학과 2021.11.24 635
354 [정현정 교수님] 유전자 가위로 생체 내 정밀한 유전자 교정에 의한 면역 항암 치료​ 생명과학과 2022.01.18 640
353 김은준 교수님_시냅스 뇌질환 연구 김은준 IBS단장 “치료약 없는 자폐 연구 도전” 생명과학과 2021.08.23 647
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 22 Next
/ 22