KAIST 생명과학과동창회
  • News & Events
  • News

News

Astrocytes eat connections to maintain plasticity in adult brains

 

by The Korea Advanced Institute of Science and Technology (KAIST) 

  

 

    Astrocytes eat connections to maintain plasticity in adult brains

A 3-D image showing our synapse phagocytosis reporter in mouse hippocampus

 

Developing brains constantly sprout new neuronal connections called synapses as they learn and remember. Important connectionsthe ones that are repeatedly introduced, such as how to avoid dangerare nurtured and reinforced, while connections deemed unnecessary are pruned away. Adult brains undergo similar pruning, but it was unclear how or why synapses in the adult brain get eliminated.                      

    

Now, a team of KAIST researchers has found the mechanism underlying plasticity and, potentially, neurological disorders in adult brains. They published their findings on December 23 in Nature.

    

"Our findings have profound implications for our understanding of how neural circuits change during learning and memory, as well as in diseases," said paper author Won-Suk Chung, an assistant professor in the Department of Biological Sciences at KAIST. "Changes in synapse number have strong association with the prevalence of various neurological disorders, such as autism spectrum disorder, schizophrenia, frontotemporal dementia, and several forms of seizures."

    

Gray matter in the brain contains microglia and astrocytes, two complementary cells that, among other things, support neurons and synapses. Microglial are a frontline immunity defense, responsible for eating pathogens and dead cells, and astrocytes are star-shaped cells that help structure the brain and maintain homeostasis by helping to control signaling between neurons. According to Professor Chung, it is generally thought that microglial eat synapses as part of its clean-up effort in a process known as phagocytosis.

    

"Using novel tools, we show that, for the first time, it is astrocytes and not microglia that constantly eliminate excessive and unnecessary adult excitatory synaptic connections in response to neuronal activity," Professor Chung said. "Our paper challenges the general consensus in this field that microglia are the primary synapse phagocytes that control synapse numbers in the brain."

  

Professor Chung and his team developed a molecular sensor to detect synapse elimination by glial cells and quantified how often and by which type of cell synapses were eliminated. They also deployed it in a mouse model without MEGF10, the gene that allows astrocytes to eliminate synapses. Adult animals with this defective astrocytic phagocytosis had unusually increased excitatory synapse numbers in the hippocampus. Through a collaboration with Dr. Hyungju Park at KBRI, they showed that these increased excitatory synapses are functionally impaired, which cause defective learning and memory formation in MEGF10 deleted animals.

 

"Through this process, we show that, at least in the adult hippocampal CA1 region, astrocytes are the major player in eliminating synapses, and this astrocytic function is essential for controlling synapse number and plasticity," Chung said.

    

Professor Chung noted that researchers are only beginning to understand how synapse elimination affects maturation and homeostasis in the brain. In his group's preliminary data in other brain regions, it appears that each region has different rates of synaptic elimination by astrocytes. They suspect a variety of internal and external factors are influencing how astrocytes modulate each regional circuit, and plan to elucidate these variables.

 

"Our long-term goal is understanding how astrocyte-mediated synapse turnover affects the initiation and progression of various neurological disorders," Professor Chung said. "It is intriguing to postulate that modulating astrocytic phagocytosis to restore synaptic connectivity may be a novel strategy in treating various brain disorders."

 

https://www.sciencedaily.com/releases/2020/12/201224090406.htm 

https://sciencecodex.com/astrocytes-eat-connections-maintain-plasticity-adult-brains-664004  

https://medicalxpress.com/news/2020-12-astrocytes-plasticity-adult-brains.html 

https://www.news-medical.net/news/20201224/Researchers-find-mechanism-underlying-plasticity-in-adult-brains.aspx 

https://www.miragenews.com/astrocytes-eat-connections-to-maintain-plasticity-in-adult-brains/ 

https://microbiozindia.com/health-news/researchers-locate-mechanism-underlying-plasticity-in-grownup-brains/


List of Articles
번호 제목 글쓴이 날짜 조회 수
390 최준호 교수, 2012년 정부연구개발 우수성과에 선정 과사무실 2012.11.02 11554
389 최준호 교수, '이달의 과학기술자상' 수상 과사무실 2011.12.01 13472
388 최준호 교수 연구팀, 초파리 생체시계 유전자 'Twenty-four' 발견하여 Nature 발표 과사무실 2011.02.17 16649
387 최은비 박사과정 학생(김미영 교수 실험실) Oncogene 게재(2016.02) / Eun-Bee Choi, a Ph.D candidate in Prof. Mi-Young Kim’s lab published a paper in Oncogene (2016.02) 생명과학과 2016.03.07 13309
386 최유라 학생 21세기 이끌 우수인재상 수상 과사무실 2005.01.27 11185
385 최길주 교수, 제5회 마크로젠 신진과학자상 수상 과사무실 2008.10.13 11758
384 최길주 교수, 정진길 박사 Nature Communications지 논문 게재 (2014. 8) 과사무실 2014.09.11 13445
383 최길주 교수, 이나영 박사 The Plant Cell 게재(2015.08) / Prof. Giltsy Choi and PhD. Nayoung Lee published a paper at The Plant Cell 과사무실 2015.08.19 19378
382 최길주 교수, 김정현 박사과정 학생 The Plant Cell 게재(2016.06) / Prof. Giltsu Choi and Junghyun Kim, a Ph.D. candidate published a paper in The Plant Cell (2016.06) 생명과학과 2016.07.05 13687
381 최길주 교수, The Plant Cell 게재 (2013.12) 과사무실 2013.12.17 19561
380 최길주 교수, PNAS에 논문 게재! 과사무실 2011.01.12 12604
379 최길주 교수, PNAS(P Natl Acad Sci USA) 4월호에 논문 게재 과사무실 2009.04.23 14796
378 최길주 교수, PNAS 에 논문 게재! (2012. 1 online) 과사무실 2012.01.12 10961
377 최길주 교수, Plant Cell 2월호에 논문 게재 과사무실 2009.04.02 14992
376 최길주 교수, KAIST 지정 석좌교수 임명 / Prof. Giltsu Choi is appointed KAIST-chair professor. 생명과학과 2016.03.16 17189
375 최길주 교수 美 광생물학회 학술지 부편집장으로 선임 과사무실 2003.09.22 14136
374 최광욱 교수님 실험실 목정완 박사과정 학생, '2017 페임랩 코리아’ 대상 수상 생명과학과 2017.05.15 21341
373 최광욱 교수, 홍성태 박사 Nature Communications 논문 게재(2016.09) / Prof. Kwang-Wook Choi and Dr. Sung-Tae Hong published a paper in Nature Communications 생명과학과 2016.10.06 14691
372 최광욱 교수, 2014 국내 바이오분야 연구성과 및 뉴스 Top5 선정 / Prof. Kwang-Wook Choi was selected as Top 5 news of 2014 in domestic bio research field 과사무실 2015.01.15 13379
371 초파리의 일주기 리듬에 관여하는 새로운 유전자 발견... 최준호 교수 연구팀 과사무실 2007.07.20 12909
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 22 Next
/ 22