KAIST 생명과학과동창회
  • News & Events
  • News

News

(왼쪽부터) 생명과학과 김상규 교수, 김재철AI대학원 황성주 교수, 생명과학과 김태인 석박사통합과정, 김재철AI대학원 이슬 석박사통합과정

< (왼쪽부터) 생명과학과 김상규 교수, 김재철AI대학원 황성주 교수, 생명과학과 김태인 석박사통합과정, 김재철AI대학원 이슬 석박사통합과정 >

 

식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다.

우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다.

천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않아 현재는 식물로부터 직접 추출해 사용하고 있다. 생합성 경로 연구는 도전적이지만 이를 밝히고 생합성 효소를 찾을 수 있다면 천연물의 활용 가치를 증진할 수 있다.

식물 천연물 생합성 경로 연구의 첫 단계는 식물이 어떻게 물질을 합성하는지 그 경로를 역추적(역합성 경로를 제시)하는 것으로 시작된다. 공동연구팀은 딥러닝을 활용해 천연물의 역-생합성 경로를 예측하는 모델을 제시했다. 이번 연구에서 연구팀은 발전된 역합성 모델과 생화학적 직관을 결합해 성공적으로 천연물 생합성 경로 예측을 수행하는 인공지능 모델을 개발했다.

그림 1. 리드레트로(READRetro)를 활용해 예측한 천연물 생합성 경로. 천연물 생합성 연구에서 주목받고 있는 catharanthine, tarbersonine을 비롯한 다양한 천연물의 생합성 경로를 성공적으로 예측하였다.

< 그림 1. 리드레트로(READRetro)를 활용해 예측한 천연물 생합성 경로. 천연물 생합성 연구에서 주목받고 있는 catharanthine, tarbersonine을 비롯한 다양한 천연물의 생합성 경로를 성공적으로 예측하였다. >

 

연구팀은 개발한 인공지능의 이름을 ‘역합성을 읽어내는 모델’이라는 뜻을 담아 ‘리드레트로(READRetro)’라고 명명했다. 이 모델은 천연물 역합성을 예측하는 인공지능 모델 중 최고의 성능을 보이는 것으로 확인되었고 이를 개별 연구자들이 쉽게 활용할 수 있도록 구현했다는 데 의미를 가진다.

김상규 교수는 “식물이 어떻게 복잡한 천연물을 만들 수 있게 되었는지 이해하는 기초 연구에서부터 천연물 기반 의약품을 대량으로 생산하기 위한 합성생물학 연구 등에 활용이 기대된다. 추후 합성 경로를 매개하는 효소를 예측하거나 거대 분자의 역합성 예측 정확도를 높이는 연구를 실시할 계획이다” 라고 말했다. 또한 김 교수는 “이번 연구는 2022년 KAIST 인공지능연구원에서 주최한 멜팅 팟(Melting pot) 세미나에서 저와 황성주 교수가 발제자와 토론자로 만난 인연으로 시작됐다. KAIST가 표방하는 융합이 생화학자와 전산학자의 힘을 합쳐 이끌어 낸 좋은 연구로 큰 의미를 갖는다고 생각한다”고 강조했다.

그림 2. 웹으로 구현된 리드레트로(READRetro). readretro.net 웹 페이지를 활용해 누구든 관심있는 천연물의 생합성 경로를 다양한 옵션으로 예측할 수 있다.

< 그림 2. 웹으로 구현된 리드레트로(READRetro). readretro.net 웹 페이지를 활용해 누구든 관심있는 천연물의 생합성 경로를 다양한 옵션으로 예측할 수 있다. >

 

생명과학과 김태인 석박사통합과정과 김재철AI대학원 이슬 석박사통합과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴 파이톨로지스트(New Phytologist)'에 출판됐다. (논문명 : READRetro: natural product biosynthesis predicting with retrieval-augmented dual-view retrosynthesis).

한편 이번 연구는 KAIST POST-AI, 한국연구재단, 과학기술정보통신부 등의 지원을 받아 수행됐다.

 

https://news.kaist.ac.kr/news/html/news/?mode=V&mng_no=38990


List of Articles
번호 제목 글쓴이 날짜 조회 수
61 [김진우 교수님, 민광욱 박사님] 왼쪽 눈이 본 것을 오른쪽 뇌가 알게 하라​ 생명과학과 2023.03.02 1057
60 [김재경 교수님] 포스코 사이언스 펠로십 선정​ 생명과학과 2023.10.18 959
59 [김은준 교수님] 자폐 진단․ 치료 골든타임, 동물실험으로 확인 생명과학과 2022.09.27 789
58 [김은준 교수님] 대규모 한국인 자폐증 가족 유전체 연구를 통한 새로운 자폐 유전변이 최초 발견​ 생명과학과 2022.07.19 838
57 [김윤기, 조원기 교수님] 비정상 단백질 처리에 관여하는 새로운 인자 발견 생명과학과 2023.10.12 832
56 [김윤기 교수님] 저용량 고효율 RNA백신 개발 가능해지다​ 생명과학과 2023.10.24 910
55 [김윤기 교수님] 새로운 단백질 번역기전 규명 file 생명과학과 2023.10.12 1230
54 [김세윤, 정원석, 손종우 교수님] 인공지능 기반 약물 가상 스크리닝 기술로 신규 항암 치료제 발굴 성공 생명과학과 2022.08.12 853
53 [김세윤, 이대엽 교수님] "후성유전 조절하는 핵심 분자기전 찾았다" 생명과학과 2022.06.02 1304
52 [김세윤, 양한슬 교수님] 장 조직의 항상성과 염증성 장염 회복의 핵심 효소 발견​ 생명과학과 2022.10.07 848
51 [김상규 교수님] 식물 유전자 비밀 푸는 김상규 카이스트 교수 생명과학과 2021.11.24 1175
50 [김상규 교수님] 생명과학과의 낭만과학자 Eco Lab 대표 김사부(KAIST 유튜브) 생명과학과 2023.12.12 742
49 [김상규 교수님] 단일세포 RNA 시퀀싱을 통한 꽃향기 합성 유전자 발굴​ 생명과학과 2022.02.15 1012
» [김상규 교수님] 누구나 천연물 합성 경로 예측 가능하다​ 생명과학과 2024.08.14 550
47 [김상규 교수님] 꽃향기, 이젠 눈으로 보세요!​ 생명과학과 2022.05.10 1257
46 [김상규 교수님] 구글도 올라 탄 神으로 가는 길[과학을읽다] 생명과학과 2022.09.07 1140
45 [김보람 박사님(서성배 교수님 연구실)] 한국뇌연구원 제2회 다한우수논문상 선정 생명과학과 2022.12.07 846
44 [김보람 박사님(서성배 교수님 연구실)] 2022년 국가연구개발 우수성과 100선 선정 file 생명과학과 2022.11.09 940
43 [김대수 교수님] 제약바이오협회, ‘KPBMA-MIT 생명과학 컨퍼런스’ 개최 생명과학과 2022.03.28 3039
42 [김대수 교수님] 액트노바, 카카오벤처스로부터 5억 규모 시드 투자 유치 "육안으로 진행되던 임상·비임상 분야 행동 실험 과정, 인공지능 영상처리 기술로 자동화" 생명과학과 2022.08.10 860
Board Pagination Prev 1 ... 14 15 16 17 18 19 20 21 22 23 Next
/ 23