KAIST 생명과학과동창회
  • News & Events
  • News

News

Gut hormone triggers craving for more proteins

Gut hormone triggers craving for more proteins
Overview of the microbiome–gut–brain axis. CNMa is upregulated by Atf4 and Mitf (and possibly other unknown factors) during the deprivation of essential amino acids, and this acts on CNMaR-expressing neurons to stimulate the compensatory appetite for essential amino acids. Credit: The Korea Advanced Institute of Science and Technology (KAIST)

A new study led by KAIST researchers using fruit flies reveals how protein deficiency in the diet triggers cross talk between the gut and brain to induce a desire to eat foods rich in proteins or essential amino acids. This finding reported in the May 5 issue of Nature can lead to a better understanding of malnutrition in humans.

"All organisms require a balanced intake of carbohydrates, proteins, and fats for their well being," explained KAIST neuroscientist and professor Greg Seong-Bae Suh. "Taking in sufficient calories alone won't do the job, as it can still lead to severe forms of malnutrition including kwashiorkor, if the diet does not include enough proteins," he added.

Scientists already knew that inadequate  intake in organisms causes a preferential choice of foods rich in proteins or essential amino acids but they didn't know precisely how this happens. A group of researchers led by Professor Suh at KAIST and Professor Won-Jae Lee at Seoul National University (SNU) investigated this process in flies by examining the effects of different genes on food preference following protein deprivation.

The group found that protein deprivation triggered the release of a gut hormone called neuropeptide CNMamide (CNMa) from a specific population of enterocytes—the intestine lining cells. Until now, scientists have known that enterocytes release digestive enzymes into the intestine to help digest and absorb nutrients in the gut. "Our study showed that enterocytes have a more complex role than we previously thought," said Professor Suh.

Enterocytes respond to protein deprivation by releasing CNMa that conveys the nutrient status in the gut to the CNMa receptors on nerve cells in the brain. This then triggers a desire to eat foods containing .

Interestingly, the KAIST-SNU team also found that the microbiome -Acetobacterbacteria—present in the gut produces amino acids that can compensate for mild protein deficit in the diet. This basal level of amino acids provided by the microbiome modifies CNMa release and tempers the flies' compensatory desire to ingest more proteins.

The research team was able to further clarify two signaling pathways that respond to protein loss from the diet and ultimately produce the CNMa hormone in these specific enterocytes.

The team said that further studies are still needed to understand how CNMa communicates with its receptors in the brain, and whether this happens by directly activating nerve cells that link the gut to the brain or by indirectly activating the brain through blood circulation. Their research could provide insights into the understanding of similar process in mammals including humans.

"We chose to investigate a simple organism, the fly, which would make it easier for us to identify and characterize key nutrient sensors. Because all organisms have cravings for needed nutrients, the nutrient sensors and their pathways we identified in flies would also be relevant to those in mammals. We believe that this research will greatly advance our understanding of the causes of metabolic disease and eating-related disorders," Professor Suh added.

 

https://phys.org/news/2021-05-gut-hormone-triggers-craving-proteins.html

https://www.sciencecodex.com/gut-hormone-triggers-craving-more-proteins-673523

https://www.technologynetworks.com/neuroscience/news/gut-hormone-release-triggers-craving-for-protein-finds-fly-study-348858

https://www.miragenews.com/gut-hormone-triggers-craving-for-more-proteins-561159/

 

 


List of Articles
번호 제목 글쓴이 날짜 조회 수
390 김세윤 교수, 김은하 박사과정 학생 Science Advances 논문 게재(2017.04) / Prof. Seyun Kim and Eunha Kim, a Ph.D. candidate published a paper in Science Advances (2017.04) new new 생명과학과 2017.05.01 15672
389 최준호 교수, 대한민국학술원상 수상! 과사무실 2012.09.18 15535
388 생명과학과 <b>정종경 교수</b>, 경암학술상 수상! 과사무실 2008.09.23 15474
387 한진희 교수님 실험실 (김지은 Post-doc, 권정태 박사과정) Nature Neuroscience 개제 과사무실 2014.01.21 15436
386 故 박태관 교수가 남기고 간 '흔적'…세계적 학술지 '주목' 과사무실 2011.05.12 15396
385 허원도 교수, 심장질환 원인신호 전달 메커니즘 규명 과사무실 2010.12.20 15375
384 허원도 교수, Mol Cell 과 JMCB 에 논문 게재! 과사무실 2012.06.11 15287
383 임대식 교수님 실험실 (김민철 박사과정) The Embo Journal 게재(2013.5) 과사무실 2013.07.05 15263
382 김학성 교수, 이중재 박사 Angewandte Chemie에 논문 게재 (2015) / Prof. Hak-Sung Kin and PhD. Joong-Jae Lee published a paper at Angewandte Chemie (2015) 생명과학과 2015.08.31 15227
381 김고운 박사과정생(조경옥 교수 Lab), 2010년 한국분자세포생물학회 우수 포스터상 수상 과사무실 2010.10.15 15216
380 김은준 교수, 기초과학연구원(IBS) 연구단장 10명에 선정! 과사무실 2012.05.09 15211
379 이상열 교수(박사 85) KAIST 올해의 동문 선정 과사무실 2005.01.04 15169
378 생명과학과 신임교원 허원도 박사 부임 예정 과사무실 2007.10.16 15146
377 허원도 교수와 양희원, 최하나 학생 Freshman Design Course에서 최우수상 수상! 과사무실 2009.09.07 15144
376 한용만 교수(박상욱 박사과정), Blood 지에 논문 게재! 과사무실 2010.11.19 15114
375 김경란, 김민진, 김태형 (강창원 교수 lab) 2010’캠퍼스 특허전략 유니버시아드 대회 장려상 수상! 과사무실 2010.12.13 15110
374 임대식 교수, 과학기술혁신본부장에 임명 file 생명과학과 2017.09.01 15081
373 생명과학과 박태관 교수, 새로운 항암유전자 전달시스템 개발 과사무실 2008.07.08 15037
372 [연합뉴스]신종 박테리아 5개중 1개꼴 한국과학자 발견...이성택교수 과사무실 2007.04.04 15006
371 학사과정 김유나 학생, 2008학년도 인성장학생으로 선정! 과사무실 2008.12.09 15003
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 22 Next
/ 22