KAIST 생명과학과동창회
  • News & Events
  • News

News

Gut hormone triggers craving for more proteins

Gut hormone triggers craving for more proteins
Overview of the microbiome–gut–brain axis. CNMa is upregulated by Atf4 and Mitf (and possibly other unknown factors) during the deprivation of essential amino acids, and this acts on CNMaR-expressing neurons to stimulate the compensatory appetite for essential amino acids. Credit: The Korea Advanced Institute of Science and Technology (KAIST)

A new study led by KAIST researchers using fruit flies reveals how protein deficiency in the diet triggers cross talk between the gut and brain to induce a desire to eat foods rich in proteins or essential amino acids. This finding reported in the May 5 issue of Nature can lead to a better understanding of malnutrition in humans.

"All organisms require a balanced intake of carbohydrates, proteins, and fats for their well being," explained KAIST neuroscientist and professor Greg Seong-Bae Suh. "Taking in sufficient calories alone won't do the job, as it can still lead to severe forms of malnutrition including kwashiorkor, if the diet does not include enough proteins," he added.

Scientists already knew that inadequate  intake in organisms causes a preferential choice of foods rich in proteins or essential amino acids but they didn't know precisely how this happens. A group of researchers led by Professor Suh at KAIST and Professor Won-Jae Lee at Seoul National University (SNU) investigated this process in flies by examining the effects of different genes on food preference following protein deprivation.

The group found that protein deprivation triggered the release of a gut hormone called neuropeptide CNMamide (CNMa) from a specific population of enterocytes—the intestine lining cells. Until now, scientists have known that enterocytes release digestive enzymes into the intestine to help digest and absorb nutrients in the gut. "Our study showed that enterocytes have a more complex role than we previously thought," said Professor Suh.

Enterocytes respond to protein deprivation by releasing CNMa that conveys the nutrient status in the gut to the CNMa receptors on nerve cells in the brain. This then triggers a desire to eat foods containing .

Interestingly, the KAIST-SNU team also found that the microbiome -Acetobacterbacteria—present in the gut produces amino acids that can compensate for mild protein deficit in the diet. This basal level of amino acids provided by the microbiome modifies CNMa release and tempers the flies' compensatory desire to ingest more proteins.

The research team was able to further clarify two signaling pathways that respond to protein loss from the diet and ultimately produce the CNMa hormone in these specific enterocytes.

The team said that further studies are still needed to understand how CNMa communicates with its receptors in the brain, and whether this happens by directly activating nerve cells that link the gut to the brain or by indirectly activating the brain through blood circulation. Their research could provide insights into the understanding of similar process in mammals including humans.

"We chose to investigate a simple organism, the fly, which would make it easier for us to identify and characterize key nutrient sensors. Because all organisms have cravings for needed nutrients, the nutrient sensors and their pathways we identified in flies would also be relevant to those in mammals. We believe that this research will greatly advance our understanding of the causes of metabolic disease and eating-related disorders," Professor Suh added.

 

https://phys.org/news/2021-05-gut-hormone-triggers-craving-proteins.html

https://www.sciencecodex.com/gut-hormone-triggers-craving-more-proteins-673523

https://www.technologynetworks.com/neuroscience/news/gut-hormone-release-triggers-craving-for-protein-finds-fly-study-348858

https://www.miragenews.com/gut-hormone-triggers-craving-for-more-proteins-561159/

 

 


List of Articles
번호 제목 글쓴이 날짜 조회 수
348 최준호 교수, 2012년 정부연구개발 우수성과에 선정 과사무실 2012.11.02 11377
347 최준호 교수, '이달의 과학기술자상' 수상 과사무실 2011.12.01 13209
346 최준호 교수 연구팀, 초파리 생체시계 유전자 'Twenty-four' 발견하여 Nature 발표 과사무실 2011.02.17 16408
345 최은비 박사과정 학생(김미영 교수 실험실) Oncogene 게재(2016.02) / Eun-Bee Choi, a Ph.D candidate in Prof. Mi-Young Kim’s lab published a paper in Oncogene (2016.02) 생명과학과 2016.03.07 12410
344 최유라 학생 21세기 이끌 우수인재상 수상 과사무실 2005.01.27 10976
343 최길주 교수, 제5회 마크로젠 신진과학자상 수상 과사무실 2008.10.13 11597
342 최길주 교수, 정진길 박사 Nature Communications지 논문 게재 (2014. 8) 과사무실 2014.09.11 13251
341 최길주 교수, 이나영 박사 The Plant Cell 게재(2015.08) / Prof. Giltsy Choi and PhD. Nayoung Lee published a paper at The Plant Cell 과사무실 2015.08.19 13411
340 최길주 교수, 김정현 박사과정 학생 The Plant Cell 게재(2016.06) / Prof. Giltsu Choi and Junghyun Kim, a Ph.D. candidate published a paper in The Plant Cell (2016.06) 생명과학과 2016.07.05 12599
339 최길주 교수, The Plant Cell 게재 (2013.12) 과사무실 2013.12.17 12695
338 최길주 교수, PNAS에 논문 게재! 과사무실 2011.01.12 12070
337 최길주 교수, PNAS(P Natl Acad Sci USA) 4월호에 논문 게재 과사무실 2009.04.23 12573
336 최길주 교수, PNAS 에 논문 게재! (2012. 1 online) 과사무실 2012.01.12 10757
335 최길주 교수, Plant Cell 2월호에 논문 게재 과사무실 2009.04.02 11316
334 최길주 교수, KAIST 지정 석좌교수 임명 / Prof. Giltsu Choi is appointed KAIST-chair professor. 생명과학과 2016.03.16 14941
333 최길주 교수 美 광생물학회 학술지 부편집장으로 선임 과사무실 2003.09.22 13616
332 최광욱 교수님 실험실 목정완 박사과정 학생, '2017 페임랩 코리아’ 대상 수상 생명과학과 2017.05.15 20799
331 최광욱 교수, 홍성태 박사 Nature Communications 논문 게재(2016.09) / Prof. Kwang-Wook Choi and Dr. Sung-Tae Hong published a paper in Nature Communications 생명과학과 2016.10.06 12066
330 최광욱 교수, 2014 국내 바이오분야 연구성과 및 뉴스 Top5 선정 / Prof. Kwang-Wook Choi was selected as Top 5 news of 2014 in domestic bio research field 과사무실 2015.01.15 12863
329 초파리의 일주기 리듬에 관여하는 새로운 유전자 발견... 최준호 교수 연구팀 과사무실 2007.07.20 12742
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 20 Next
/ 20