KAIST 생명과학과동창회
  • News & Events
  • News

News

November 19, 2020

Newly discovered metabolic pathway uses single carbon gases as a feedstock

by




18-newlydiscove.jpg


Figure 1. Acetyl-CoA production ratio in wild-type and knockout strains. Credit:  


A joint research team, affiliated with UNIST has identified a new metabolic pathway, in which microorganisms use single carbon (C1) gasses (CO and CO2) as a feedstock. The new metabolic pathway is thought to be the most energetically efficient pathway, compared to the existing ones, and thus is expected to be used in a variety of industrial applications that involved the conversion of C1 gas into value-added biochemicals.


Published in Proceedings of the National Academy of Sciences, this research has been jointly carried out by Professor Donghyuk Kim (School of Energy and Chemical Engineering, UNIST) and Professor Byung-Kwan Cho (Department of Biological Sciences, KAIST), joined by Dr. Yoseb Song (Department of Biological Sciences, KAIST) as the first author.

There are currently six autotrophic CO2 fixation pathways, capable of converting C1 gas into and one representative example is the photosynthesis in plants. Among those CO2-fixing in nature, the linear wood-ljungdahl (WLP) in phylogenetically diverse acetateforming acetogens is known to be the most energetically efficient pathway to fix C1 compounds. In particular, acetogens play an important role in the , with nearly 1,013 kg (100 billion US tons) of acetic acid being formed annually.


However, the growth rate of acetogens is 10 times slower than that of industrial microorganisms, such as E. coli. And this puts a limit on its use as industrial microorganisms for the conversion of C1 gas into useful biochemical products. Accordingly, many studies on a new and more effective CO2 fixation have been carried out.


19-newlydiscove.jpg

Figure 2. Construction of the genome-scale metabolic network model of C. drakei


The research team paid special attention to the growth rate of Clostridium drakei, which was faster than that of the other microorganisms, when accompanied by CO2 absorption. And, through this, they expected they might find clues to enhance the C1 gas conversion efficiency.


In this study, using the reconstructed genome-scale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, the research team discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO2, subsequently converting CO2 into acetyl-CoA, acetyl-phosphate, and serine.


Moreover, the functional cooperation of the pathways enhances CO2 consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.

"With the new CO2-fixing metabolic pathway, we shall overcome limitations in the biosynthesis for the production of high value-added compounds, brought by the slow growth rate of acetogens," says Professor Kim. 



https://phys.org/news/2020-11-newly-metabolic-pathway-carbon-gases.html


List of Articles
번호 제목 글쓴이 날짜 조회 수
432 송지준교수, 조수민 연구교수, 장주원 박사과정학생 nature communications 논문 게재 file 생명과학과 2020.01.02 57101
431 허원도,김대수,한용만 교수 공동연구팀,Nature Biotechnology지에 표지논문 게재 file 생명과학과 2015.10.12 40814
430 박혜림 학생 (허원도 교수님 Lab), 제1회 다카라 우수논문상 수상! / Hyerim Park (Won Do Heo's lab) won the first Takara outstanding paper award! file 생명과학과 2015.10.07 27589
429 KAIST iGEM팀(조병관 교수 지도) 2012 World Championship 진출 file 과사무실 2012.10.12 21722
428 최광욱 교수님 실험실 목정완 박사과정 학생, '2017 페임랩 코리아’ 대상 수상 생명과학과 2017.05.15 21347
427 [KAIST NEWS] 이준식 교수 정년퇴임 과사무실 2003.09.18 20797
426 허원도 교수, Nature Methods 게재 (2014. 5) 과사무실 2014.05.08 20340
425 전상용 교수, 몸 속 물질 이용한 염증 치료제 개발 / Prof. Sang-Yong Jon developed anti-inflammatory drug using biological materials 생명과학과 2016.06.15 19995
424 최길주 교수, The Plant Cell 게재 (2013.12) 과사무실 2013.12.17 19573
423 최길주 교수, 이나영 박사 The Plant Cell 게재(2015.08) / Prof. Giltsy Choi and PhD. Nayoung Lee published a paper at The Plant Cell 과사무실 2015.08.19 19403
422 김미영 교수, 박서영 박사과정생(Prof. Walton Jones Lab), '청암과학펠로' 선정 과사무실 2010.10.11 19402
421 김은준교수 실험실, Nature Neuroscience 에 논문 게재(2015.01) / Professor Eun Joon Kim’s Lab Publishes in Nature Neuroscience 과사무실 2015.01.27 19085
420 김미영 교수, KAIST 이원조교수로 선정! 과사무실 2010.10.25 18932
419 김재훈 교수, 강현아, 권부기 학생 '청암과학펠로' 선정 과사무실 2011.11.04 18852
418 허원도 교수, Nature Communications 게재(2013.2) 과사무실 2013.02.21 18749
417 오병하 교수, 제 9회 아산의학상 수상 file 생명과학과 2016.03.14 18198
416 김진우 교수, 김형태 박사 Cell Reports에 논문 게재(2015.10) / Professor Jin Woo Kim and Hyung-Tai Kim Ph.D. published paper in Cell reports (2015.10) file 생명과학과 2015.10.29 17879
415 김재현 박사과정 학생, 이승희 교수 J.Neurosci. 게재 (2016.05) / Jae-Hyun Kim and Prof. Seung-Hee Lee published article at J. Neurosci. (2016.05) 생명과학과 2016.05.18 17781
414 이승희 교수, 송유향, 김재현 박사과정 학생 Neuron 게재 file 생명과학과 2017.02.13 17753
413 김정회 교수, 한국생명공학연합회 초대 회장에 선출 / Professor Jung-Hoe Kim elected to the first president of Korea association of Bioenginiering file 생명과학과 2016.08.26 17734
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 22 Next
/ 22