KAIST 생명과학과동창회
  • News & Events
  • News

News

Growing up curious in the countryside leads to tools for manipulating endogenous proteins.

 

 

허원도 교수님 사진.jpg



Won Do Heo

“Good ideas come to me when I am very comfortable, when I am very happy,” says Won Do Heo, who is on the biology faculty at Korea Advanced Institute of Science and Technology (KAIST), and is a neuroscience fellow at the Institute for Basic Science, both in Daejon, Republic of Korea. An idea might come to him in a lab conversation, at a seminar or conference, when he is jogging, on one of his daily walks on a hill, or in the sauna at home.

 

It was a Korean national holiday and Heo was alone in the lab, thinking. He had spent a decade developing and using optogenetic tools. Suddenly, he realized how he might finally turn intrabodies, which are antibodies used to study intracellular proteins, into inducible tools.

 

Heo and his lab converted the idea into two classes of tools to target and manipulate proteins inside cells: optobodies, which can be activated by light; and chemobodies, which can be activated by small molecules. These tools leverage nanobodies, based on camelid antibodies, that are prized in cell biology for being soluble and small they’re around half the size of a green fluorescent protein molecule.

 

During that holiday musing, Heo had figured out at which cysteine residues he could split the nanobody to generate two inactive parts that do not bind a targeted protein. He checked the nanobody structure, and experiments got underway. The split structure lets an experimenter use light to, for example, activate or inhibit a protein at the cell membrane, at an organelle or in the cell nucleus. When the nanobody halves are separate, it’s like having only one chopstick for a meal, he says. Work only gets done when the other half enters the scene.

 

The tools offer high-resolution temporal and spatial information about endogenous proteins, says Heo. With optobodies, light can help with manipulating a targeted protein and thus shape cell function. The team’s chemobody would be good for an in vivo experiment, he says. Such studies, for example in neurobiology, are on his to-do list.

 

The lab used blue light to activate the optobody, but Heo believes he can get the tools to work with infrared light, too. Although there are many types of nanobodies, he believes the tools will work across this antibody class and for many types of questions. The chosen split site is in the antibody’s highly conserved domain.

 

In his lab, says Heo, tool development involves intense testing, which takes a collaborative lab culture. Lab members not involved in a project are a tool’s first users. This arrangement is not easy given his students’ eagerness to publish quickly. But Heo seeks generalizable, broadly applicable tools. “I don’t make very special, very tricky things,” he says, which might only work in a few labs.

 

In his lab, Heo encourages his students to explore projects that intrigue them and that will make them happy during their years in his lab. “If they are not happy with something, I won’t be happy, too.”

 

Heo grew up on a farm in the country. “I didn’t really have the plan to be a professorresearcher at the time,” he says. He played with his dog, rabbit and cows, and was curious about how they interacted and cared for their young. He learned about rice and barley farming. “It’s not textbook, it’s just nature,” he says. In high school, he began breeding birds: peacocks, turkeys, pheasants, parrots and canaries.

 

Even college was not in his plans, but curiosity led him to Gyeongsang National University. “I realized that I had to step up to another level,” he says. Heo studied plant biology and switched to biochemistry in graduate school.

 

For his postdoctoral fellowship, curiosity was again a driver. He wanted to work in mammalian systems, and joined the Duke University lab of Tobias Meyer. Heo followed Meyer to Stanford University where, after a few years, he was promoted to staff researcher. After nine years in California, Heo joined KAIST and chose to focus on optogenetics.

 

Heo feels he can now combine his experience across fields: plant biology, cell biology, cell signaling and neurobiology. As Heo completed his PhD, he remembers realizing that many plant proteins are not present in mammals, which might make them useful tools, he says. This idea has emerged as a cornerstone of optogenetics.

 

Optogenetics has taken cell biology labs beyond observation, which might miss half of the actual cellular events. Cells “are talking to each other, communicating to each other,” he says. The ability to activate or deactivate proteins with light gives labs a way to explore cell biology more deeply and can help them, for example, determine proteins crucial to the cell cycle.

 

“If they are not happy with something, I won’t be happy.”

 

“I admire Won Do’s work for its creativity; he has applied optical control by the cryptochromeCIB1 interaction in very imaginative ways,” says Heo’s friend and colleague, Stanford University researcher Michael Lin. Heo and his students don’t shy away from the hard work necessary to realize their ideas, says Lin. “Developing truly new methods is high-risk and time-consuming, but Won Do has shown that the high rewards make it worth it.”



출처: Nature Methods > This month >

       https://www.nature.com/articles/s41592-019-0626-1


List of Articles
번호 제목 글쓴이 날짜 조회 수
160 김상규 KAIST 교수, 제12회 여천생태학상 받아 file 생명과학과 2019.08.12 6675
159 이승재 교수, 올리브유의 노화 방지 및 장수 효과 입증 file 생명과학과 2019.08.22 5929
158 윤기준 교수, '2019 서경배과학재단 신진 과학자' 선정 file 생명과학과 2019.09.23 6253
157 정인경 교수, 인체 조직읜 3차원 게놈지도 해독 file 생명과학과 2019.09.25 4924
156 허원도 교수, 항체를 빛으로 활성화 시키는 항체광유전학 기술 개발 file 생명과학과 2019.10.28 5618
» 허원도 교수, Nature Methods지 11월호 This Month로 소개됨 file 생명과학과 2019.10.28 8068
154 서성배 교수, 당뇨에 큰 영향 미치는 뇌 혈당조절 신경세포 발견 file 생명과학과 2019.10.30 5078
153 KAIST 김승중 교수 (생명과학과 겸임교수) 대한민국바이오의약품대상 수상 file 생명과학과 2019.11.04 5744
152 허원도 교수, 광유전학 신경세포 수용체 활성조절로 신경세포분화 운명 제어 성공(Cell Chemical Biology 표지논문 발표) file 생명과학과 2019.12.24 4925
151 임대식 교수, 천주교 서울대교구 생명위원회 제 14회 '생명의 신비상' 수상 file 생명과학과 2019.12.26 5199
150 송지준교수, 조수민 연구교수, 장주원 박사과정학생 nature communications 논문 게재 file 생명과학과 2020.01.02 57528
149 허원도 교수님_머리에 빛 비춰 공간기억 및 공감능력 높이는 광유전학 기술개발 file 생명과학과 2020.01.21 5717
148 강창원 교수님 생물학 교과서 다시 쓴다… RNA 합성 재생단계 국내 학계서 최초 규명 file 생명과학과 2020.01.29 5382
147 손종우 교수님_ 소금 섭취 제어할 수 있는 신체 메커니즘 규명 file 생명과학과 2020.02.12 5266
146 허원도 교수님_빛으로 RNA 이동과 단백질 합성 조절한다 file 생명과학과 2020.02.20 4513
145 김세윤교수님_보톡스처럼 신경 활성 억제하는 뇌 속 생체물질 찾았다 file 생명과학과 2020.03.26 4432
144 조병관 교수님_ 미생물 이용한 탄소 가스 활용기술 개발 file 생명과학과 2020.03.27 3807
143 제5회 연구노트 경진대회(Lab Note Contest) 시상식 file 생명과학과 2020.04.03 4786
142 2020년 우수논문상 file 생명과학과 2020.04.03 4221
141 이승희 교수님_KAIST, 뇌 인지기능 높이는 물질 발견… 치매 치료 효과 기대 file 생명과학과 2020.04.26 5300
Board Pagination Prev 1 ... 10 11 12 13 14 15 16 17 18 19 ... 22 Next
/ 22