KAIST 생명과학과동창회
  • News & Events
  • News

News

암줄기세포1.jpg




우리 대학 생명과학과 전상용, 이대엽 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 특수 고분자박막을 이용해 3차원 암 줄기세포 스페로이드(spheroids)를 손쉽게 제작할 수 있는 세포배양 플랫폼을 개발했다.


연구팀은 ‘개시제를 이용한 화학 기상 증착법’을 이용한 고분자 박막을 형성해 암 줄기세포를 제작하는 데 성공했다. 이번 연구를 통해 암 줄기세포 기초 연구 및 약물 개발 플랫폼의 원천 기술을 제공할 수 있을 것으로 기대된다.


최민석, 최윤정 박사, 유승정 박사과정이 공동 1 저자로 참여한 이번 연구는 미국 암학회(AACR) 대표 국제학술지인‘암 연구(Cancer Research)’ 10월 24일자 온라인 판에 게재됐다.(논문명 : Polymer thin film-induced tumor spheroids acquire cancer stem cell-like properties)


암 줄기세포는 항암제에 대한 내재적 저항성을 가져 암의 전이와 재발에 깊이 관여하고 있다. 그러나 종양 안에 극히 일부 존재하기 때문에 지금까지는 다양한 암 줄기세포의 대량 확보가 어려워 암 연구 및 약물 개발에 제약이 있었다. 생체 내에서 암은 3차원 조직 덩어리 형태로 존재하므로 암 줄기세포를 스페로이드 형태로 배양하는 연구가 필요하다.


연구팀은 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용해 세포배양 기판 위에 특정 고분자 (pV4D4)박막을 형성했다.


그 위에 다양한 암세포를 배양한 결과 암세포들이 고분자박막 표면으로부터 자극을 받아 서로 뭉치면서 3차원 스페로이드 형태를 만들었고, 이와 동시에 항암제에 대한 저항성을 가진 종양 암 줄기세포로 변화하는 것을 확인했다.


연구팀은 이러한 ‘표면자극 유도 암 줄기세포(Surface stimuli-induced cancer stem cell-like cell)’를 고효율로 손쉽게 대량 배양하는 데 성공했다.


연구팀은 이번 연구에서 특정 고분자 박막에서 배양된 표면 자극 유도 암 줄기세포 스페로이드가 약 24시간 안에 형성되며 분석결과 암 줄기세포 관련 유전자의 양이 배양시간에 따라 증가함을 발견했다.


연구팀이 개발한 플랫폼을 통해 형성된 암 줄기세포 스페로이드는 실제 항암제를 처리했을 때 뛰어난 약물저항성을 지니고 있음을 확인했다. 또한 종양 동물모델에서 비교그룹에서는 보이지 않았던 다른 장기로 암이 전이되는 것을 확인했다.


연구팀은 전체염기서열분석(Whole-genome sequencing)을 통해 표면 자극 유도 암 줄기세포와 실제 암 환자 암 줄기세포와의 유사성을 확인했다.


전상용 교수는 “이미 시판되고 있는 다양한 종류의 암 세포주들 뿐만 아니라 환자에서 유래한 생체 내 환경과 유사한 3차원 스페로이드 형태로 양질의 암 줄기세포를 고효율로 손쉽게 대량 배양할 수 있는 원천 기술을 개발했다”라며 “향후 암 줄기세포 기초 연구 및 약물 개발의 패러다임을 바꿀 수 있을 것으로 기대한다”라고 말했다.


또한 “나아가 암 줄기세포 제작용 플랫폼 소재에 대한 원천 기술 확보를 통해 거대한 암 관련 의료시장에서의 경제적인 부가가치 창출도 가능할 것으로 기대한다”라고 말했다.


이번 연구는 삼성전자 미래기술육성재단의 지원을 받아 수행됐다. 재단에서는 이 연구의 중요성을 높이 평가해 올해 9월부터 후속 과제 사업을 통해 3년 연장 지원을 결정했다.


□ 그림 설명

암줄기세포2.png




출처: 글로벌이코노믹 이재구 기자(KAIST, 암 줄기세포 제작 원천기술 개발)


List of Articles
번호 제목 글쓴이 날짜 조회 수
393 [정인경 교수님] 기저 질환이 없는 코로나19 환자의 중증 신규 유전적 위험 인자 규명 new 생명과학과 2022.09.29 2
392 [김은준 교수님] 자폐 진단․ 치료 골든타임, 동물실험으로 확인 생명과학과 2022.09.27 35
391 [송지준 교수님] 헌팅턴병 발병원인 제거를 위한 치료제 개발 방법 제시​ 생명과학과 2022.09.02 143
390 [조병관 교수님] 대량의 고농도 일산화탄소를 고부가가치 바이오케미칼로 전환하는 기술 개발 생명과학과 2022.07.15 161
389 [김대수 교수님] 액트노바, 카카오벤처스로부터 5억 규모 시드 투자 유치 "육안으로 진행되던 임상·비임상 분야 행동 실험 과정, 인공지능 영상처리 기술로 자동화" 생명과학과 2022.08.10 171
388 [김상규 교수님] 구글도 올라 탄 神으로 가는 길[과학을읽다] 생명과학과 2022.09.07 173
387 [이승희 교수님] 신경전달물질 소마토스타틴의 알츠하이머 독성 개선효과 발견​ 생명과학과 2022.07.25 191
386 [김은준 교수님] 대규모 한국인 자폐증 가족 유전체 연구를 통한 새로운 자폐 유전변이 최초 발견​ 생명과학과 2022.07.19 194
385 [전상용 교수님] 항암치료용 인공탄수화물 기반 나노의약 개발​ 생명과학과 2022.07.12 195
384 [김대수 교수님] “뇌는 무언가 실패하는 순간 발달...‘메타인지’로 창의성 키워야” [이노베이트코리아 2022] 생명과학과 2022.07.18 205
383 [메디포럼 정재언 대표] 메디포럼, 정재언 연구소장 신임 대표이사 선임…“임상 R&D 중심 경영 집중” 생명과학과 2022.03.14 211
382 [정원석 교수님] 카이스트, 노화된 뇌에서 생겨난 비정상적 별아교세포 ‘아프다(APDA)’발견 생명과학과 2022.08.08 212
381 [이승재 교수님] 건강한 장수를 유도하는 돌연변이 유전자 발굴 생명과학과 2021.11.24 245
380 [김세윤, 정원석, 손종우 교수님] 인공지능 기반 약물 가상 스크리닝 기술로 신규 항암 치료제 발굴 성공 생명과학과 2022.08.12 248
379 [김찬혁, 정원석 교수님] 심각한 염증 부작용 없앤 새로운 알츠하이머병 치료제 개발​ 생명과학과 2022.08.22 263
378 [루닛 서범석 대표] 바이오업계 유니콘 기대 루닛, 서범석 '치료 예측 AI' 고도화 박차 생명과학과 2022.04.27 264
377 [손종우 교수님] 서울의대동창회, 제25회 함춘학술상 수상자 선정 생명과학과 2022.03.08 269
376 [오병하 교수님] 오미크론에도 듣는 범용 항체, 국내에서 개발 생명과학과 2022.02.04 281
375 [한진희 교수님] 카이스트, 뉴런(신경 세포) 교체에 의한 기억저장 규명 생명과학과 2021.11.24 294
374 [최길주, 김상규 교수님] 카오스재단 2022 봄 카오스강연 ‘식물행성 (Plant Planet)’ 에서 강연(4/6) 생명과학과 2022.02.22 302
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 20 Next
/ 20