KAIST 생명과학과동창회
  • News & Events
  • News

News

November 19, 2020

Newly discovered metabolic pathway uses single carbon gases as a feedstock

by




18-newlydiscove.jpg


Figure 1. Acetyl-CoA production ratio in wild-type and knockout strains. Credit:  


A joint research team, affiliated with UNIST has identified a new metabolic pathway, in which microorganisms use single carbon (C1) gasses (CO and CO2) as a feedstock. The new metabolic pathway is thought to be the most energetically efficient pathway, compared to the existing ones, and thus is expected to be used in a variety of industrial applications that involved the conversion of C1 gas into value-added biochemicals.


Published in Proceedings of the National Academy of Sciences, this research has been jointly carried out by Professor Donghyuk Kim (School of Energy and Chemical Engineering, UNIST) and Professor Byung-Kwan Cho (Department of Biological Sciences, KAIST), joined by Dr. Yoseb Song (Department of Biological Sciences, KAIST) as the first author.

There are currently six autotrophic CO2 fixation pathways, capable of converting C1 gas into and one representative example is the photosynthesis in plants. Among those CO2-fixing in nature, the linear wood-ljungdahl (WLP) in phylogenetically diverse acetateforming acetogens is known to be the most energetically efficient pathway to fix C1 compounds. In particular, acetogens play an important role in the , with nearly 1,013 kg (100 billion US tons) of acetic acid being formed annually.


However, the growth rate of acetogens is 10 times slower than that of industrial microorganisms, such as E. coli. And this puts a limit on its use as industrial microorganisms for the conversion of C1 gas into useful biochemical products. Accordingly, many studies on a new and more effective CO2 fixation have been carried out.


19-newlydiscove.jpg

Figure 2. Construction of the genome-scale metabolic network model of C. drakei


The research team paid special attention to the growth rate of Clostridium drakei, which was faster than that of the other microorganisms, when accompanied by CO2 absorption. And, through this, they expected they might find clues to enhance the C1 gas conversion efficiency.


In this study, using the reconstructed genome-scale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, the research team discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO2, subsequently converting CO2 into acetyl-CoA, acetyl-phosphate, and serine.


Moreover, the functional cooperation of the pathways enhances CO2 consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.

"With the new CO2-fixing metabolic pathway, we shall overcome limitations in the biosynthesis for the production of high value-added compounds, brought by the slow growth rate of acetogens," says Professor Kim. 



https://phys.org/news/2020-11-newly-metabolic-pathway-carbon-gases.html


List of Articles
번호 제목 글쓴이 날짜 조회 수
112 임대식 교수, EMBO Journal 에 논문 게재 (2012.3.7) 과사무실 2012.04.17 12689
111 임대식 교수, KAIST 지정 석좌교수 임용 과사무실 2014.02.25 11972
110 임대식 교수, PNAS 게재 (2013.4) 과사무실 2013.05.02 12574
109 임대식 교수, PNAS에 논문 게재! 과사무실 2010.04.21 12089
108 임대식 교수, 과학기술혁신본부장에 임명 file 생명과학과 2017.09.01 15086
107 임대식 교수, 교과부 ' 창의적연구진흥사업'의 신규 지원과제에 선정! 과사무실 2010.04.21 12367
106 임대식 교수, 김민철 박사 Cell Reports 에 논문 게재(2015.03) / Professor Dae-Sik Lim and Min Cheol Kim, Ph.D Publish in Cell Reports (2015.03) 과사무실 2015.04.06 14454
105 임대식 교수, 세포분열시 MST1 kinase의 새로운 암 억제 기능 발견 (2010. 3) 과사무실 2010.07.09 11592
104 임대식 교수, 천주교 서울대교구 생명위원회 제 14회 '생명의 신비상' 수상 file 생명과학과 2019.12.26 4935
103 임대식 교수, 한국과학상 대통령상 수상(2016. 12. 27) file 생명과학과 2016.12.28 13182
102 임대식 교수님 실험실 (김민철 박사과정) The Embo Journal 게재(2013.5) 과사무실 2013.07.05 15264
101 임대식 최길주 교수 승진 인사발령 과사무실 2004.09.01 14540
100 임정훈 박사 한국분자・세포생물학회 우수박사학위논문상 수상 과사무실 2004.09.09 14173
99 자연과학대학 우수 강의 교원 및 우수 직원 포상 과사무실 2007.03.29 10623
98 전상용 교수 연구팀, 금 알갱이로 항암백신을 만들다 과사무실 2012.08.17 11745
97 전상용 교수, 2009~2014 기초학문 약학분야 9위 선정 생명과학과 2016.10.04 15900
96 전상용 교수, 2012년도 「글로벌연구실(GRL)」신규 지원과제에 선정! 과사무실 2012.08.17 12554
95 전상용 교수, 94회 일본화학회 정기학회 'Distinguished Lectureship Award' 수상 과사무실 2014.04.02 13028
94 전상용 교수, ACS Nano 게재(2014.2) 과사무실 2014.03.12 12660
93 전상용 교수, Cancer Research게제(2014.2) 과사무실 2014.03.12 13126
Board Pagination Prev 1 ... 12 13 14 15 16 17 18 19 20 21 22 Next
/ 22