KAIST 생명과학과동창회
  • News & Events
  • News

News

Astrocytes eat connections to maintain plasticity in adult brains

 

by The Korea Advanced Institute of Science and Technology (KAIST) 

  

 

    Astrocytes eat connections to maintain plasticity in adult brains

A 3-D image showing our synapse phagocytosis reporter in mouse hippocampus

 

Developing brains constantly sprout new neuronal connections called synapses as they learn and remember. Important connectionsthe ones that are repeatedly introduced, such as how to avoid dangerare nurtured and reinforced, while connections deemed unnecessary are pruned away. Adult brains undergo similar pruning, but it was unclear how or why synapses in the adult brain get eliminated.                      

    

Now, a team of KAIST researchers has found the mechanism underlying plasticity and, potentially, neurological disorders in adult brains. They published their findings on December 23 in Nature.

    

"Our findings have profound implications for our understanding of how neural circuits change during learning and memory, as well as in diseases," said paper author Won-Suk Chung, an assistant professor in the Department of Biological Sciences at KAIST. "Changes in synapse number have strong association with the prevalence of various neurological disorders, such as autism spectrum disorder, schizophrenia, frontotemporal dementia, and several forms of seizures."

    

Gray matter in the brain contains microglia and astrocytes, two complementary cells that, among other things, support neurons and synapses. Microglial are a frontline immunity defense, responsible for eating pathogens and dead cells, and astrocytes are star-shaped cells that help structure the brain and maintain homeostasis by helping to control signaling between neurons. According to Professor Chung, it is generally thought that microglial eat synapses as part of its clean-up effort in a process known as phagocytosis.

    

"Using novel tools, we show that, for the first time, it is astrocytes and not microglia that constantly eliminate excessive and unnecessary adult excitatory synaptic connections in response to neuronal activity," Professor Chung said. "Our paper challenges the general consensus in this field that microglia are the primary synapse phagocytes that control synapse numbers in the brain."

  

Professor Chung and his team developed a molecular sensor to detect synapse elimination by glial cells and quantified how often and by which type of cell synapses were eliminated. They also deployed it in a mouse model without MEGF10, the gene that allows astrocytes to eliminate synapses. Adult animals with this defective astrocytic phagocytosis had unusually increased excitatory synapse numbers in the hippocampus. Through a collaboration with Dr. Hyungju Park at KBRI, they showed that these increased excitatory synapses are functionally impaired, which cause defective learning and memory formation in MEGF10 deleted animals.

 

"Through this process, we show that, at least in the adult hippocampal CA1 region, astrocytes are the major player in eliminating synapses, and this astrocytic function is essential for controlling synapse number and plasticity," Chung said.

    

Professor Chung noted that researchers are only beginning to understand how synapse elimination affects maturation and homeostasis in the brain. In his group's preliminary data in other brain regions, it appears that each region has different rates of synaptic elimination by astrocytes. They suspect a variety of internal and external factors are influencing how astrocytes modulate each regional circuit, and plan to elucidate these variables.

 

"Our long-term goal is understanding how astrocyte-mediated synapse turnover affects the initiation and progression of various neurological disorders," Professor Chung said. "It is intriguing to postulate that modulating astrocytic phagocytosis to restore synaptic connectivity may be a novel strategy in treating various brain disorders."

 

https://www.sciencedaily.com/releases/2020/12/201224090406.htm 

https://sciencecodex.com/astrocytes-eat-connections-maintain-plasticity-adult-brains-664004  

https://medicalxpress.com/news/2020-12-astrocytes-plasticity-adult-brains.html 

https://www.news-medical.net/news/20201224/Researchers-find-mechanism-underlying-plasticity-in-adult-brains.aspx 

https://www.miragenews.com/astrocytes-eat-connections-to-maintain-plasticity-in-adult-brains/ 

https://microbiozindia.com/health-news/researchers-locate-mechanism-underlying-plasticity-in-grownup-brains/


List of Articles
번호 제목 글쓴이 날짜 조회 수
321 이승희 교수님_시각 정보 인식해 행동 결정하는 대뇌 신경회로 과정 밝혀 생명과학과 2021.08.30 956
320 이승희 교수님_KAIST, 뇌 인지기능 높이는 물질 발견… 치매 치료 효과 기대 file 생명과학과 2020.04.26 5419
319 이승희 교수, 송유향, 김재현 박사과정 학생 Neuron 게재 file 생명과학과 2017.02.13 18328
318 이승재 교수님_One More Key to Human Longevity Found After Worm Research 생명과학과 2020.07.03 11318
317 이승재 교수, 한성과학상 수상 file 생명과학과 2019.07.01 6794
316 이승재 교수, 올리브유의 노화 방지 및 장수 효과 입증 file 생명과학과 2019.08.22 6066
315 이상열 교수(박사 85) KAIST 올해의 동문 선정 과사무실 2005.01.04 15682
314 이상기 박사 한국생명공학연구원장 취임 과사무실 2005.07.12 14051
313 이균민 교수, 교무처장 인사 발령 과사무실 2010.07.15 12213
312 이균민 교수 생명과학과 학과장 취임 과사무실 2007.09.13 13086
311 이규리 학생(박태관 교수님 Lab), ICMAT 2009 & IUMRS-ICA 2009 Best Poster Award 수상 과사무실 2009.07.13 13906
310 윤기준 교수, '2019 서경배과학재단 신진 과학자' 선정 file 생명과학과 2019.09.23 6376
309 우주연 학생(김은준 교수님 Lab), 로레알-유네스코 펠로쉽 수상 과사무실 2009.06.23 17932
308 오병하 교수님_자연에 없는 고감도 단백질 센서 제작 플랫폼 개발 생명과학과 2021.02.08 1238
307 오병하 교수, 제 9회 아산의학상 수상 file 생명과학과 2016.03.14 18633
306 양한슬 교수님_ 서경배과학재단 2021년 신진과학자 선정 file 생명과학과 2021.08.31 1066
305 송지준교수, 조수민 연구교수, 장주원 박사과정학생 nature communications 논문 게재 file 생명과학과 2020.01.02 57669
304 송지준 교수, 김은지 박사 Molecular Cell에 논문 게재(2015) / Prof. Ji-Joon Song and PhD. Eun-Ji Kim published a paper at Molecular Cell (2015) 과사무실 2015.07.29 14892
303 송지준 교수, PNAS 게재 (2012.8) 과사무실 2012.12.10 14962
302 송지준 교수, J.Am.Chem.Soc. 게재 (2013.10) 과사무실 2013.10.18 14469
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 ... 23 Next
/ 23