KAIST 생명과학과동창회
  • News & Events
  • News

News

Antibiotic tolerance study paves way for new treatments

Posted on Mar 02, 2021, 3 p.m.


A new study identifies a mechanism that makes bacteria tolerant to penicillin and related antibiotics, findings that could lead to new therapies that boost the effectiveness of these treatments.


Antibiotic tolerance is the ability of bacteria to survive exposure to antibiotics, in contrast to antibiotic resistance, when bacteria actually grow in the presence of antibiotics. Tolerant bacteria can lead to infections that persist after treatment and may develop into resistance over time.


The study in mice, “A Multifaceted Cellular Damage Repair and Prevention Pathway Promotes High Level Tolerance to Beta-lactam Antibiotics,” published Feb. 3 in the journal EMBO Reports, reveals how tolerance occurs, thanks to a system that mitigates iron toxicity in bacteria that have been exposed to penicillin.


“We’re hoping we can design a drug or develop antibiotic adjuvants that would then basically kill off these tolerant cells,” said senior author Tobias Dörr, assistant professor of microbiology in the Weill Institute for Cell and Molecular Biology in the College of Agriculture and Life Sciences.


Co-authors included Ilana Brito, the Mong Family Sesquicentennial Faculty Scholar and assistant professor in the Meinig School of Biomedical Engineering in the College of Engineering, and Lars Westblade, associate professor of pathology and laboratory medicine at Weill Cornell Medicine.


Some bacteria, including the model bacterium used in the study, Vibrio cholerae, which causes cholera in humans, are remarkably tolerant to penicillin and related antibiotics, known as beta-lactam antibiotics. It has been known for a long time that beta-lactam antibiotics break down bacterial cell walls, but how bacteria survive loss of their cell walls was poorly understood.


In the study, the researchers developed a V. cholerae mutant that lacked a two-component damage repair response system that controls a gene network encoding diverse functions. Without the system, known as VxrAB, when the cell wall is damaged by antibiotics, the transfer of electrons across the cell membrane goes awry, leading to electrons ending up on the wrong molecules. This misdirection causes hydrogen peroxide to accumulate in the cell, which changes the oxidation state of cellular iron and disrupts signals for the cell to tell how much iron it has.  


In the presence of hydrogen peroxide, the mutant bacteria cannot sense how much iron has been acquired, and it behaves as if it is iron-starved and seeks to acquire more iron. Left unchecked, these circumstances cause iron toxicity, which will kill the cell, according to the experiments the researchers conducted. In further tests with mutant V. cholerae bacteria, both in test tubes and in mice, the researchers showed that reducing the influx of iron increased the bacteria’s tolerance to beta-lactams.


Fortunately for normal V. cholerae, exposure to antibiotics and the breakdown of the cell’s walls activate the VxrAB system, which works to repair cell walls and downregulates iron uptake systems, and thereby creates antibiotic tolerance. More study is needed to understand what triggers the VxrAB system in the presence of beta-lactam antibiotics.


The research opens the door for developing new drugs that could be combined with antibiotics to exploit oxidative damage and iron influx in tolerant bacteria. In future work, the researchers will search for parallel mechanisms of tolerance in other bacterial pathogens.


Jung-Ho Shin, a postdoctoral researcher in Dörr’s lab, is the paper’s first author. Co-authors include researchers from the Korea Advanced Institute of Science and Technology, the Korea Advanced Institute of Science and Technology, and the Intelligent Synthetic Biology Center in Korea.

The study was funded by the National Research Foundation of Korea and the National Institutes of Health.


https://www.worldhealth.net/news/antibiotic-tolerance-study-paves-way-new-treatments/


List of Articles
번호 제목 글쓴이 날짜 조회 수
377 [정인경 교수님] 파킨슨병 발병 3차원 게놈 지도 최초 제시​ 생명과학과 2023.05.08 1943
376 이승희 교수님_시각 정보 인식해 행동 결정하는 대뇌 신경회로 과정 밝혀 생명과학과 2021.08.30 1953
375 2021 대성해강미생물포럼_좌장 조병관 교수, 연사 김대수 교수_21.09.28(화) 13:00~ file 생명과학과 2021.09.13 1960
374 [전상용, 조병관 교수님] 나노입자로 염증부터 면역치료까지 가능 생명과학과 2023.06.21 1961
373 [김재경 교수님] 포스코 사이언스 펠로십 선정​ 생명과학과 2023.10.18 1963
372 [조병관 교수님] 한국연구재단, 노화 방지하고 회춘하는 방법 제시 생명과학과 2022.01.13 1964
371 [김찬혁 교수님] 서울대병원, '꿈의 항암제' CAR-T 임상1상 본격 돌입 생명과학과 2022.02.04 1971
370 [정현정 교수님] 유전자 가위로 생체 내 정밀한 유전자 교정에 의한 면역 항암 치료​ 생명과학과 2022.01.18 1982
369 한진희 교수님_ 치매 치료에 열 올리는 KAIST·연구기관 생명과학과 2021.08.18 1983
368 2021 Agrwal Award 시상식이 9월 9일(목) 오후 4시_이준혁 학생(정원석 교수) file 생명과학과 2021.09.06 1985
367 [김찬혁 교수님] 말기 고형암 표적 2세대 면역치료제 개발​ 생명과학과 2023.04.20 1985
366 [조원기 교수님] 세포 기능 결정에 핵심 역할 유전자 발현 단백질 찾았다 생명과학과 2021.12.24 1997
365 양한슬 교수님_ 서경배과학재단 2021년 신진과학자 선정 file 생명과학과 2021.08.31 2012
364 [김학성 교수님] 카이스트, 거대 단백질 구조체를 레고 블록 쌓듯 조립하는 기술 개발 생명과학과 2021.11.24 2019
363 [정현정 교수님] 암세포만 골라 유전자 교정 치료하는 신약 개발​ 생명과학과 2024.04.08 2020
362 [김찬혁 교수님] 카이스트, 면역관문 신호 극복하는 차세대 CAR-T 세포 치료제 개발 생명과학과 2021.11.24 2031
361 [김상규 교수님] 구글도 올라 탄 神으로 가는 길[과학을읽다] 생명과학과 2022.09.07 2044
360 [김대수 교수님] “뇌는 무언가 실패하는 순간 발달...‘메타인지’로 창의성 키워야” [이노베이트코리아 2022] 생명과학과 2022.07.18 2062
359 김은준 교수님_시냅스 뇌질환 연구 김은준 IBS단장 “치료약 없는 자폐 연구 도전” 생명과학과 2021.08.23 2100
358 [정원석 교수님] 카이스트, 노화된 뇌에서 생겨난 비정상적 별아교세포 ‘아프다(APDA)’발견 생명과학과 2022.08.08 2115
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 23 Next
/ 23