KAIST 생명과학과동창회
  • News & Events
  • News

News

Growing up curious in the countryside leads to tools for manipulating endogenous proteins.

 

 

허원도 교수님 사진.jpg



Won Do Heo

“Good ideas come to me when I am very comfortable, when I am very happy,” says Won Do Heo, who is on the biology faculty at Korea Advanced Institute of Science and Technology (KAIST), and is a neuroscience fellow at the Institute for Basic Science, both in Daejon, Republic of Korea. An idea might come to him in a lab conversation, at a seminar or conference, when he is jogging, on one of his daily walks on a hill, or in the sauna at home.

 

It was a Korean national holiday and Heo was alone in the lab, thinking. He had spent a decade developing and using optogenetic tools. Suddenly, he realized how he might finally turn intrabodies, which are antibodies used to study intracellular proteins, into inducible tools.

 

Heo and his lab converted the idea into two classes of tools to target and manipulate proteins inside cells: optobodies, which can be activated by light; and chemobodies, which can be activated by small molecules. These tools leverage nanobodies, based on camelid antibodies, that are prized in cell biology for being soluble and small they’re around half the size of a green fluorescent protein molecule.

 

During that holiday musing, Heo had figured out at which cysteine residues he could split the nanobody to generate two inactive parts that do not bind a targeted protein. He checked the nanobody structure, and experiments got underway. The split structure lets an experimenter use light to, for example, activate or inhibit a protein at the cell membrane, at an organelle or in the cell nucleus. When the nanobody halves are separate, it’s like having only one chopstick for a meal, he says. Work only gets done when the other half enters the scene.

 

The tools offer high-resolution temporal and spatial information about endogenous proteins, says Heo. With optobodies, light can help with manipulating a targeted protein and thus shape cell function. The team’s chemobody would be good for an in vivo experiment, he says. Such studies, for example in neurobiology, are on his to-do list.

 

The lab used blue light to activate the optobody, but Heo believes he can get the tools to work with infrared light, too. Although there are many types of nanobodies, he believes the tools will work across this antibody class and for many types of questions. The chosen split site is in the antibody’s highly conserved domain.

 

In his lab, says Heo, tool development involves intense testing, which takes a collaborative lab culture. Lab members not involved in a project are a tool’s first users. This arrangement is not easy given his students’ eagerness to publish quickly. But Heo seeks generalizable, broadly applicable tools. “I don’t make very special, very tricky things,” he says, which might only work in a few labs.

 

In his lab, Heo encourages his students to explore projects that intrigue them and that will make them happy during their years in his lab. “If they are not happy with something, I won’t be happy, too.”

 

Heo grew up on a farm in the country. “I didn’t really have the plan to be a professorresearcher at the time,” he says. He played with his dog, rabbit and cows, and was curious about how they interacted and cared for their young. He learned about rice and barley farming. “It’s not textbook, it’s just nature,” he says. In high school, he began breeding birds: peacocks, turkeys, pheasants, parrots and canaries.

 

Even college was not in his plans, but curiosity led him to Gyeongsang National University. “I realized that I had to step up to another level,” he says. Heo studied plant biology and switched to biochemistry in graduate school.

 

For his postdoctoral fellowship, curiosity was again a driver. He wanted to work in mammalian systems, and joined the Duke University lab of Tobias Meyer. Heo followed Meyer to Stanford University where, after a few years, he was promoted to staff researcher. After nine years in California, Heo joined KAIST and chose to focus on optogenetics.

 

Heo feels he can now combine his experience across fields: plant biology, cell biology, cell signaling and neurobiology. As Heo completed his PhD, he remembers realizing that many plant proteins are not present in mammals, which might make them useful tools, he says. This idea has emerged as a cornerstone of optogenetics.

 

Optogenetics has taken cell biology labs beyond observation, which might miss half of the actual cellular events. Cells “are talking to each other, communicating to each other,” he says. The ability to activate or deactivate proteins with light gives labs a way to explore cell biology more deeply and can help them, for example, determine proteins crucial to the cell cycle.

 

“If they are not happy with something, I won’t be happy.”

 

“I admire Won Do’s work for its creativity; he has applied optical control by the cryptochromeCIB1 interaction in very imaginative ways,” says Heo’s friend and colleague, Stanford University researcher Michael Lin. Heo and his students don’t shy away from the hard work necessary to realize their ideas, says Lin. “Developing truly new methods is high-risk and time-consuming, but Won Do has shown that the high rewards make it worth it.”



출처: Nature Methods > This month >

       https://www.nature.com/articles/s41592-019-0626-1


List of Articles
번호 제목 글쓴이 날짜 조회 수
40 [김상규 교수님] 단일세포 RNA 시퀀싱을 통한 꽃향기 합성 유전자 발굴​ 생명과학과 2022.02.15 366
39 [허원도, 윤기준 교수님] 제51주년 개교기념식 개교기념 우수교원 포상 및 특별포상에서 학술상, 우수강의상 수상 생명과학과 2022.02.16 397
38 [김대수 교수님] '유퀴즈' 뇌과학자 김대수, 깻잎 논쟁 "절대로 해선 안 되는 행동" 생명과학과 2022.02.17 617
37 [최길주, 김상규 교수님] 카오스재단 2022 봄 카오스강연 ‘식물행성 (Plant Planet)’ 에서 강연(4/6) 생명과학과 2022.02.22 356
36 [정원석 교수님] 제28회 삼성휴먼테크 논문대상에서 생명과학과 변유경 학생 은상 수상​ 생명과학과 2022.03.02 416
35 [서성배 교수님] 육감 센서 찾는 서성배 카이스트 생명과학부 교수 생명과학과 2022.03.03 629
34 [손종우 교수님] 서울의대동창회, 제25회 함춘학술상 수상자 선정 생명과학과 2022.03.08 328
33 [메디포럼 정재언 대표] 메디포럼, 정재언 연구소장 신임 대표이사 선임…“임상 R&D 중심 경영 집중” 생명과학과 2022.03.14 246
32 충북도, 글로벌 바이오 캠퍼스 유치에 KAIST와 '맞손' 생명과학과 2022.03.15 328
31 [오병하 교수님] 뉴스의인물/ KAIST 생명과학과 오병하 교수 생명과학과 2022.03.21 428
30 [김대수 교수님] 제약바이오협회, ‘KPBMA-MIT 생명과학 컨퍼런스’ 개최 생명과학과 2022.03.28 388
29 [강창원, 서연수 교수님] RNA 합성의 세 갈래 끝내기 제시​ 생명과학과 2022.03.31 385
28 [임정훈 동문교수님] “초파리로 루게릭병 잡는다” 임정훈 분자생물학자 생명과학과 2022.04.04 473
27 [조병관 교수님] 카이스트 조병관 교수팀, 합성생물학 기반 차세대 미생물 대사 조절 밸브 개발 생명과학과 2022.04.15 778
26 [김대수 교수님] 네이버 열린연단 '자유와 이성' 주제로 시즌9 강연 시작 생명과학과 2022.04.22 343
25 [루닛 서범석 대표] 바이오업계 유니콘 기대 루닛, 서범석 '치료 예측 AI' 고도화 박차 생명과학과 2022.04.27 317
24 [송지준 교수님] 호르몬 조절 원리와 구조 밝혀냈다 생명과학과 2022.05.06 518
23 [김상규 교수님] 꽃향기, 이젠 눈으로 보세요!​ 생명과학과 2022.05.10 507
22 [김세윤, 이대엽 교수님] "후성유전 조절하는 핵심 분자기전 찾았다" 생명과학과 2022.06.02 571
21 [조병관 교수님] 이산화탄소 흡수해 아세트산 만드는 '친환경 미생물' 5종 발견 생명과학과 2022.06.17 2558
Board Pagination Prev 1 ... 11 12 13 14 15 16 17 18 19 20 Next
/ 20