KAIST 생명과학과동창회
  • News & Events
  • News

News

Gut hormone triggers craving for more proteins

Gut hormone triggers craving for more proteins
Overview of the microbiome–gut–brain axis. CNMa is upregulated by Atf4 and Mitf (and possibly other unknown factors) during the deprivation of essential amino acids, and this acts on CNMaR-expressing neurons to stimulate the compensatory appetite for essential amino acids. Credit: The Korea Advanced Institute of Science and Technology (KAIST)

A new study led by KAIST researchers using fruit flies reveals how protein deficiency in the diet triggers cross talk between the gut and brain to induce a desire to eat foods rich in proteins or essential amino acids. This finding reported in the May 5 issue of Nature can lead to a better understanding of malnutrition in humans.

"All organisms require a balanced intake of carbohydrates, proteins, and fats for their well being," explained KAIST neuroscientist and professor Greg Seong-Bae Suh. "Taking in sufficient calories alone won't do the job, as it can still lead to severe forms of malnutrition including kwashiorkor, if the diet does not include enough proteins," he added.

Scientists already knew that inadequate  intake in organisms causes a preferential choice of foods rich in proteins or essential amino acids but they didn't know precisely how this happens. A group of researchers led by Professor Suh at KAIST and Professor Won-Jae Lee at Seoul National University (SNU) investigated this process in flies by examining the effects of different genes on food preference following protein deprivation.

The group found that protein deprivation triggered the release of a gut hormone called neuropeptide CNMamide (CNMa) from a specific population of enterocytes—the intestine lining cells. Until now, scientists have known that enterocytes release digestive enzymes into the intestine to help digest and absorb nutrients in the gut. "Our study showed that enterocytes have a more complex role than we previously thought," said Professor Suh.

Enterocytes respond to protein deprivation by releasing CNMa that conveys the nutrient status in the gut to the CNMa receptors on nerve cells in the brain. This then triggers a desire to eat foods containing .

Interestingly, the KAIST-SNU team also found that the microbiome -Acetobacterbacteria—present in the gut produces amino acids that can compensate for mild protein deficit in the diet. This basal level of amino acids provided by the microbiome modifies CNMa release and tempers the flies' compensatory desire to ingest more proteins.

The research team was able to further clarify two signaling pathways that respond to protein loss from the diet and ultimately produce the CNMa hormone in these specific enterocytes.

The team said that further studies are still needed to understand how CNMa communicates with its receptors in the brain, and whether this happens by directly activating nerve cells that link the gut to the brain or by indirectly activating the brain through blood circulation. Their research could provide insights into the understanding of similar process in mammals including humans.

"We chose to investigate a simple organism, the fly, which would make it easier for us to identify and characterize key nutrient sensors. Because all organisms have cravings for needed nutrients, the nutrient sensors and their pathways we identified in flies would also be relevant to those in mammals. We believe that this research will greatly advance our understanding of the causes of metabolic disease and eating-related disorders," Professor Suh added.

 

https://phys.org/news/2021-05-gut-hormone-triggers-craving-proteins.html

https://www.sciencecodex.com/gut-hormone-triggers-craving-more-proteins-673523

https://www.technologynetworks.com/neuroscience/news/gut-hormone-release-triggers-craving-for-protein-finds-fly-study-348858

https://www.miragenews.com/gut-hormone-triggers-craving-for-more-proteins-561159/

 

 


List of Articles
번호 제목 글쓴이 날짜 조회 수
112 최준호 교수, '이달의 과학기술자상' 수상 과사무실 2011.12.01 13472
111 김재섭 교수 논문 Nature Genetics 게재 과사무실 2005.01.31 13509
110 [매일경제] 고규영 교수 "혈관생성물질 세계 첫 개발" 과사무실 2004.04.14 13516
109 [대덕넷] 임대식 교수"癌 억제하는 유전자 기능 밝혀졌다" 과사무실 2004.02.06 13533
108 ‘올해의 KAIST 교수상’ - 김재섭 교수 과사무실 2005.12.30 13547
107 이상기 박사 한국생명공학연구원장 취임 과사무실 2005.07.12 13554
106 학사과정 김혜림, 국립암센터 인턴쉽 포스터발표 최우수상 수상 과사무실 2010.09.07 13557
105 한국, 신종 박테리아 발표건수 68종 세계 1위 - 이성택 교수 세계 2위 과사무실 2005.12.19 13566
104 목혜정 박사와 이수현 학생(박태관 교수님 Lab), 로슈 마르코 폴로 심포지움에서 최우수 포스터상 수상! 과사무실 2009.09.22 13631
103 임대식 교수, 2016년도 한국분자세포생물학회 정기학술대회 학술상 생명과학상 소개 강연 생명과학과 2016.10.10 13646
102 임대식 교수 논문 Nature Cell Biology 게재 1 과사무실 2004.01.26 13652
101 [대덕넷] 생명과학과 정종경교수... 과기부 2분기 우수과학자 10인 선정 과사무실 2007.09.04 13653
100 생명과학과 김정회 교수... 대전광역시 주최 이달의 과학기술인 상 선정 과사무실 2007.10.05 13692
99 서라민 박사과정 학생. 제 18차 KHUPO 프로테오믹스 국제학술대회 수상 file 생명과학과 2018.04.30 13693
98 최길주 교수, 김정현 박사과정 학생 The Plant Cell 게재(2016.06) / Prof. Giltsu Choi and Junghyun Kim, a Ph.D. candidate published a paper in The Plant Cell (2016.06) 생명과학과 2016.07.05 13694
97 "어, 해독제가 항생제로 바뀌네" - 김학성 교수팀 단백질 설계기술 개발 과사무실 2006.02.06 13733
96 허원도 교수, Trang T. T. Nguyen박사 PNAS지에 논문 게재(2016.08) / Prof. Won Do Heo, PhD. Trang T. T. Nguyen publish an article in PNAS (2016.08) 생명과학과 2016.08.25 13794
95 김진우 교수, 김남석 박사 eLife지 논문 발표 (2014. 9) 과사무실 2014.09.11 13813
94 "당뇨병 합병증 치료단백질 개발!" - 고규영교수팀 과사무실 2006.03.14 13846
93 김선창 교수 송암학술상 수상 과사무실 2003.12.23 13855
Board Pagination Prev 1 ... 12 13 14 15 16 17 18 19 20 21 22 Next
/ 22